Your browser doesn't support javascript.
loading
Circadian Vesicle Capture Prepares Clock Neuron Synapses for Daily Phase-Delayed Neuropeptide Release.
Klose, Markus K; Kim, Junghun; Schmidt, Brigitte F; Levitan, Edwin S.
Afiliação
  • Klose MK; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
  • Kim J; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
  • Schmidt BF; Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
  • Levitan ES; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
bioRxiv ; 2024 Jun 14.
Article em En | MEDLINE | ID: mdl-38106047
ABSTRACT
Drosophila sLNv clock neurons release the neuropeptide PDF to control circadian rhythms. Strikingly, PDF content in sLNv terminals is rhythmic with a peak in the morning hours prior to the onset of activity-dependent release. Because synaptic PDF accumulation, rather than synaptic release, aligns with the late-night elevations in both sLNv neuron excitability and Ca2+, we explored the dependence of presynaptic neuropeptide accumulation on neuropeptide vesicle transport, electrical activity and the circadian clock. Live imaging reveals that anterograde axonal transport is constant throughout the day and capture of circulating neuropeptide vesicles rhythmically boosts presynaptic neuropeptide content hours prior to release. The late-night surge in vesicle capture, like release, requires electrical activity and results in a large releasable pool of presynaptic vesicles to support the later burst of neuropeptide release. The circadian clock is also required suggesting that it controls the switch from vesicle capture to exocytosis, which are normally coupled activity-dependent processes. This toggling of activity transduction maximizes rhythmic synaptic neuropeptide release needed for robust circadian behavior and resolves the previously puzzling delay in timing of synaptic neuropeptide release relative to changes in sLNv clock neuron physiology.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article