Your browser doesn't support javascript.
loading
Benzothiazole derivatives as p53-MDM2 inhibitors: in-silico design, ADMET predictions, molecular docking, MM-GBSA Assay, MD simulations studies.
N, Shridhar Deshpande; Kumar D, Udaya; Ghate, Sudeep D; Dixit, Sheshagiri R; Awasthi, Abhimanyu; Revanasiddappa, B C.
Afiliação
  • N SD; Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, Karnataka, India.
  • Shivakumar; Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India.
  • Kumar D U; Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India.
  • Ghate SD; Center for Bioinformatics, Nitte (Deemed to be University), Deralakatte, Karnataka, India.
  • Dixit SR; Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Karnataka, India.
  • Awasthi A; Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Karnataka, India.
  • Revanasiddappa BC; Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, Karnataka, India.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 18.
Article em En | MEDLINE | ID: mdl-38111168
ABSTRACT
Breast cancer stands as the most prevalent malignancy among the female populace. One of the pivotal domains in the therapeutic landscape of breast cancer revolves around the precise targeting of the p53-MDM2 inhibitory pathway. The advent of p53-MDM2 inhibition in the context of developing treatments for breast cancer marks a significant stride. In the quest for enhancing the efficacy of p53-MDM2 inhibition against breast cancer, a new series of benzothiazole compounds (B1-B30) was designed through in-silico methodologies in the present work. Using Schrodinger Maestro, the compounds underwent molecular docking assessments against the p53-MDM2 target (PDB 4OGT). Compared to reference compounds, B25 and B12 exhibited notably elevated glide scores. Extensive in-silico studies, including ADMET and toxicity evaluations, were performed to predict pharmacokinetics, drug likeness, and toxicity. All compounds adhered to Lipinski criteria, signifying favorable oral drug properties. The MM-GBSA analysis indicated consistent binding free energies. Molecular dynamics simulations for B25 over 200 ns assessed complex stability and interactions. In summary, these compounds exhibit potential for future cancer therapy medication development.Communicated by Ramaswamy H. Sarma.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article