Your browser doesn't support javascript.
loading
An ultrasensitive unlabeled electrochemical immunosensor for the detection of cardiac troponin I based on Pt/Au-B,S,N-rGO as the signal amplification platform.
Li, Mengjiao; Wu, Yu; Ke, Chenxi; Song, Zichen; Zheng, Meie; Yu, Qingjie; Zhu, Hongda; Guo, Huiling; Sun, Hongmei; Liu, Mingxing.
Afiliação
  • Li M; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Wu Y; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Ke C; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Song Z; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Zheng M; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Yu Q; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Zhu H; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Guo H; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Sun H; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
  • Liu M; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People'
Talanta ; 270: 125546, 2024 Apr 01.
Article em En | MEDLINE | ID: mdl-38128282
ABSTRACT
In this study, an ultrasensitive unlabeled electrochemical immunosensor for the detection of cardiac troponin I (cTnI) was developed based on Pt/Au modified B,S,N co-doped reduced graphene oxide (Pt/Au-B,S,N-rGO) as a signal amplification platform. First-principles calculations were employed to analyze the electron density of states of Pt/Au-B,S,N-rGO, revealing an increase in the electron density of the graphene oxide (GO) states. Furthermore, scanning electron microscopy (SEM), X-ray photoelectron diffraction spectroscopy (XPS), and electrochemical detection were used to successfully construct and analyze Pt/Au-B,S,N-rGO. The results showed that B,S,N-rGO exhibited good electrochemical activity, and the Au/Pt NPs demonstrated excellent catalytic properties, which provided a strong foundation for achieving high-sensitivity detection. Moreover, the constructed unlabeled electrochemical immunosensor had an ideal linear range (0.1 pg/mL∼50 ng/mL) and detection limit (0.082 pg/mL). In human serum detection, the results of this immunosensor were essentially similar to the ELISA results for the same samples, which suggested that the immunosensor had a promising clinical application prospect for the detection of cTnI.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanopartículas Metálicas / Grafite Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanopartículas Metálicas / Grafite Idioma: En Ano de publicação: 2024 Tipo de documento: Article