Your browser doesn't support javascript.
loading
CNS Drug Delivery in Stroke: Improving Therapeutic Translation From the Bench to the Bedside.
Ronaldson, Patrick T; Williams, Erica I; Betterton, Robert D; Stanton, Joshua A; Nilles, Kelsy L; Davis, Thomas P.
Afiliação
  • Ronaldson PT; Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson.
  • Williams EI; Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson.
  • Betterton RD; Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson.
  • Stanton JA; Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson.
  • Nilles KL; Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson.
  • Davis TP; Department of Pharmacology, College of Medicine (P.T.R., E.I.C., R.D.B., J.A.S., T.P.D.) and Graduate Interdisciplinary Program in Neuroscience (P.T.R., K.L.N., T.P.D.), University of Arizona, Tucson.
Stroke ; 55(1): 190-202, 2024 01.
Article em En | MEDLINE | ID: mdl-38134249
ABSTRACT
Drug development for ischemic stroke is challenging as evidenced by the paucity of therapeutics that have advanced beyond a phase III trial. There are many reasons for this lack of clinical translation including factors related to the experimental design of preclinical studies. Often overlooked in therapeutic development for ischemic stroke is the requirement of effective drug delivery to the brain, which is critical for neuroprotective efficacy of several small and large molecule drugs. Advancing central nervous system drug delivery technologies implies a need for detailed comprehension of the blood-brain barrier (BBB) and neurovascular unit. Such knowledge will permit the innate biology of the BBB/neurovascular unit to be leveraged for improved bench-to-bedside translation of novel stroke therapeutics. In this review, we will highlight key aspects of BBB/neurovascular unit pathophysiology and describe state-of-the-art approaches for optimization of central nervous system drug delivery (ie, passive diffusion, mechanical opening of the BBB, liposomes/nanoparticles, transcytosis, intranasal drug administration). Additionally, we will discuss how endogenous BBB transporters represent the next frontier of drug delivery strategies for stroke. Overall, this review will provide cutting edge perspective on how central nervous system drug delivery must be considered for the advancement of new stroke drugs toward human trials.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acidente Vascular Cerebral / AVC Isquêmico Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acidente Vascular Cerebral / AVC Isquêmico Idioma: En Ano de publicação: 2024 Tipo de documento: Article