Your browser doesn't support javascript.
loading
Micropatterned Nanofiber Scaffolds of Salmon Gelatin, Chitosan, and Poly(vinyl alcohol) for Muscle Tissue Engineering.
Taborda, María I; Catalan, Karina N; Orellana, Nicole; Bezjak, Dragica; Enrione, Javier; Acevedo, Cristian A; Corrales, Tomas P.
Afiliação
  • Taborda MI; Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
  • Catalan KN; Programa de doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso-Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
  • Orellana N; Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2340000, Chile.
  • Bezjak D; Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
  • Enrione J; Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
  • Acevedo CA; Programa de doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso-Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
  • Corrales TP; Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile.
ACS Omega ; 8(50): 47883-47896, 2023 Dec 19.
Article em En | MEDLINE | ID: mdl-38144088
ABSTRACT
The development of scaffolds that mimic the aligned fibrous texture of the extracellular matrix has become an important requirement in muscle tissue engineering. Electrospinning is a widely used technique to fabricate biomimetic scaffolds. Therefore, a biopolymer blend composed of salmon gelatin (SG), chitosan (Ch), and poly(vinyl alcohol) (PVA) was developed by electrospinning onto a micropatterned (MP) collector, resulting in a biomimetic scaffold for seeding muscle cells. Rheology and surface tension studies were performed to determine the optimum solution concentration and viscosity for electrospinning. The scaffold microstructure was analyzed using SEM to determine the nanofiber's diameter and orientation. Blends of SG/Ch/PVA exhibited better electrospinnability and handling properties than pure PVA. The resulting scaffolds consist of a porous surface (∼46%), composed of a random fiber distribution, for a flat collector and scaffolds with regions of aligned nanofibers for the MP collector. The nanofiber diameters are 141 ± 2 and 151 ± 2 nm for the flat and MP collector, respectively. In vitro studies showed that myoblasts cultured on scaffold SG/Ch/PVA presented a high rate of cell growth. Furthermore, the aligned nanofibers on the SG/Ch/PVA scaffold provide a suitable platform for myoblast alignment.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article