Your browser doesn't support javascript.
loading
CapMatch: Semi-Supervised Contrastive Transformer Capsule With Feature-Based Knowledge Distillation for Human Activity Recognition.
Article em En | MEDLINE | ID: mdl-38150344
ABSTRACT
This article proposes a semi-supervised contrastive capsule transformer method with feature-based knowledge distillation (KD) that simplifies the existing semisupervised learning (SSL) techniques for wearable human activity recognition (HAR), called CapMatch. CapMatch gracefully hybridizes supervised learning and unsupervised learning to extract rich representations from input data. In unsupervised learning, CapMatch leverages the pseudolabeling, contrastive learning (CL), and feature-based KD techniques to construct similarity learning on lower and higher level semantic information extracted from two augmentation versions of the data", weak" and "timecut", to recognize the relationships among the obtained features of classes in the unlabeled data. CapMatch combines the outputs of the weak-and timecut-augmented models to form pseudolabeling and thus CL. Meanwhile, CapMatch uses the feature-based KD to transfer knowledge from the intermediate layers of the weak-augmented model to those of the timecut-augmented model. To effectively capture both local and global patterns of HAR data, we design a capsule transformer network consisting of four capsule-based transformer blocks and one routing layer. Experimental results show that compared with a number of state-of-the-art semi-supervised and supervised algorithms, the proposed CapMatch achieves decent performance on three commonly used HAR datasets, namely, HAPT, WISDM, and UCI_HAR. With only 10% of data labeled, CapMatch achieves F1 values of higher than 85.00% on these datasets, outperforming 14 semi-supervised algorithms. When the proportion of labeled data reaches 30%, CapMatch obtains F1 values of no lower than 88.00% on the datasets above, which is better than several classical supervised algorithms, e.g., decision tree and k -nearest neighbor (KNN).

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article