Your browser doesn't support javascript.
loading
Preparation of housefly (Musca domestica) larvae protein hydrolysates: Influence of dual-sweeping-frequency ultrasound-assisted enzymatic hydrolysis on yield, antioxidative activity, functional and structural attributes.
Yang, Fan; Chen, Wen; Dabbour, Mokhtar; Kumah Mintah, Benjamin; Xu, Haining; Pan, Jiayin; Dai, Chunhua; Ma, Haile; He, Ronghai.
Afiliação
  • Yang F; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
  • Chen W; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
  • Dabbour M; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt.
  • Kumah Mintah B; CSIR - Food Research Institute, P.O. Box M20, Accra, Ghana; Department of Agro-Processing Technology and Food Bio-Sciences, CSIR College of Science and Technology (CCST), Accra, Ghana.
  • Xu H; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
  • Pan J; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
  • Dai C; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
  • Ma H; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
  • He R; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. Electronic address: heronghai1971@126.com.
Food Chem ; 440: 138253, 2024 May 15.
Article em En | MEDLINE | ID: mdl-38150897
ABSTRACT
Dual-sweeping-frequency ultrasound (DSFU) was utilized in the preparation of polypeptides from housefly (Musca domestica) larvae protein (HLP). Results indicated that ultrasonication (20 ± 2/28 ± 2 kHz, 42 W/L, 25 min) significantly increased peptide yield and DPPH scavenging capacity by 8.25 % and 14.83 %, respectively. Solubility, foaming and emulsification properties of polypeptides were improved by 19.89 %, 33.33 % and 38.74 % over the control; along with notable reduction in particle size and increase in zeta potential. Tertiary structural changes of the sonicated hydrolysates were illustrated by UV and fluorescence spectra. FTIR showed that ultrasonication increased α-helix, ß-turn, and random coil by 38.23 %, 46.35 % and 16.36 %, respectively, but decreased ß-sheet by 48.03 %, indicating partial unfolding in HLP hydrolysate conformation and reduction in intermolecular interactions. The research results demonstrated that dual-sweeping-frequency ultrasonication has a great prospect in industry application for the purpose of improving enzymolysis efficiency and product quality for housefly larvae protein hydrolysates production.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Moscas Domésticas / Antioxidantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Moscas Domésticas / Antioxidantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article