Your browser doesn't support javascript.
loading
Genomic inbreeding measures applied to a population of mice divergently selected for birth weight environmental variance.
Ojeda-Marín, Candela; Cervantes, Isabel; Formoso-Rafferty, Nora; Gutiérrez, Juan Pablo.
Afiliação
  • Ojeda-Marín C; Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
  • Cervantes I; Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
  • Formoso-Rafferty N; Departamento de Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
  • Gutiérrez JP; Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
Front Genet ; 14: 1303748, 2023.
Article em En | MEDLINE | ID: mdl-38155710
ABSTRACT
This study aimed to compare different inbreeding measures estimated from pedigree and molecular data from two divergent mouse lines selected for environmental birth weight during 26 generations. Furthermore, the performance of different approaches and both molecular and pedigree data sources for estimating Ne were tested in this population. A total of 1,699 individuals were genotyped using a high-density genotyping array. Genomic relationship matrices were used to calculate molecular inbreeding Nejati-Javaremi (F NEJ), Li and Horvitz (F L&H), Van Raden method 1 (F VR1) and method 2 (F VR2), and Yang (F YAN). Inbreeding based on runs of homozygosity (F ROH) and pedigree inbreeding (F PED) were also computed. F ROH, F NEJ, and F L&H were also adjusted for their average values in the first generation of selection and named F ROH0, F NEJ0, and F L&H0. ∆F was calculated from pedigrees as the individual inbreeding rate between the individual and his parents (∆F PEDt) and individual increases in inbreeding (∆F PEDi). Moreover, individual ∆F was calculated from the different molecular inbreeding coefficients (∆F NEJ0, ∆F L&H, ∆F L&H0, ∆F VR1, ∆F VR2, ∆F YAN, and ∆F ROH0). The Ne was obtained from different ∆F, such as Ne PEDt, Ne PEDi, Ne NEJ0, Ne L&H, Ne L&H0, Ne VR1, Ne VR2, Ne YAN, and Ne ROH0. Comparing with F PED , F ROH , F NEJ and F VR2 overestimated inbreeding while F NEJ0 , F L&H , F L&H0 , F VR1 and F YAN underestimated inbreeding. Correlations between inbreeding coefficients and ∆F were calculated. F ROH had the highest correlation with F PED (0.89); F YAN had correlations >0.95 with all the other molecular inbreeding coefficients. Ne PEDi was more reliable than Ne PEDt and presented similar behaviour to Ne L&H0 and Ne NEJ0. Stable trends in Ne were not observed until the 10th generation. In the 10th generation Ne PEDi was 42.20, Ne L&H0 was 45.04 and Ne NEJ0 was 45.05 and in the last generation these Ne were 35.65, 35.94 and 35.93, respectively F ROH presented the highest correlation with F PED, which addresses the identity by descent probability (IBD). The evolution of Ne L&H0 and Ne NEJ0 was the most similar to that of Ne PEDi. Data from several generations was necessary to reach a stable trend for Ne, both with pedigree and molecular data. This population was useful to test different approaches to computing inbreeding coefficients and Ne using molecular and pedigree data.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article