Your browser doesn't support javascript.
loading
Rapid laser fabrication of indium tin oxide and polymer-derived ceramic composite thin films for high-temperature sensors.
Xu, Lida; Zhou, Xiong; Zhao, Fuxin; Fu, Yanzhang; Tang, Lantian; Zeng, Yingjun; Chen, Guochun; Wu, Chao; Wang, Lingyun; Chen, Qinnan; Yang, Kai; Sun, Daoheng; Hai, Zhenyin.
Afiliação
  • Xu L; Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Zhou X; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Zhao F; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Fu Y; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Tang L; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Zeng Y; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Chen G; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Wu C; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Wang L; Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Chen Q; Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Yang K; China Aerodynamics Research and Development Center, Mianyang 621000, China. Electronic address: yg.hit@hotmail.com.
  • Sun D; Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
  • Hai Z; Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
J Colloid Interface Sci ; 658: 913-922, 2024 Mar 15.
Article em En | MEDLINE | ID: mdl-38157615
ABSTRACT
Thin-film sensors are essential for real-time monitoring of components in high-temperature environments. Traditional fabrication methods often involve complicated fabrication steps or require prolonged high-temperature annealing, limiting their practical applicability. Here, we present an approach using direct ink writing and laser scanning (DIW-LS) to fabricate high-temperature functional thin films. An indium tin oxide (ITO)/preceramic polymer (PP) ink suitable for DIW was developed. Under LS, the ITO/PP thin film shrank in volume. Meanwhile, the rapid pyrolysis of PP into amorphous precursor-derived ceramic (PDC) facilitated the faster sintering of ITO nanoparticles and improved the densification of the thin film. This process realized the formation of a conductive network of interconnected ITO nanoparticles. The results show that the ITO/PDC thin film exhibits excellent stability, with a drift rate of 4.7 % at 1000 °C for 25 h, and withstands temperatures up to 1250 °C in the ambient atmosphere. It is also sensitive to strain, with a maximum gauge factor of -6.0. As a proof of concept, we have used DIW-LS technology to fabricate a thin-film heat flux sensor on the surface of the turbine blade, capable of measuring heat flux densities over 1 MW/m2. This DIW-LS process provides a viable approach for the integrated, rapid, and flexible fabrication of thin film sensors for harsh environments.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article