Your browser doesn't support javascript.
loading
Multifunctional Eu3+-MOF for simultaneous quantification of malachite green and leuco-malachite green and efficient adsorption of malachite green.
Xia, Yi-Fan; Yuan, Hou-Qun; Qiao, Chen; Li, Wei; Wang, Ran; Chen, Peiyao; Li, Yan-Xia; Bao, Guang-Ming.
Afiliação
  • Xia YF; National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
  • Yuan HQ; National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic
  • Qiao C; National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
  • Li W; College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China.
  • Wang R; National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
  • Chen P; National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
  • Li YX; College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China.
  • Bao GM; National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic
J Hazard Mater ; 465: 133386, 2024 Mar 05.
Article em En | MEDLINE | ID: mdl-38160559
ABSTRACT
Multi-target detection combined with in-situ removal of contaminants is a challenging issue difficult to overcome. Herein, a dual-emissive Eu3+-metal organic framework (Eu3+-MOF) was constructed by pre-functionalization with a blue-emissive ligand and post-functionalization with red-emissive Eu3+ ions using a UiO-66 precursor. The fluorescence of the synthesized Eu3+-MOF is highly selective and sensitive toward malachite green (MG) and its metabolite leuco-malachite green (LMG), which are environmentally persistent and highly toxic to humans. The limit of detection of MG and LMG are 34.20 and 1.98 nM, respectively. Interestingly, the fluorescence of this Eu3+-MOF showed ratiometric but different responsive modes toward MG and LMG, which enabled the simultaneous quantification of MG and LMG. Furthermore, a paper-based sensor combined with the smartphone was fabricated, which facilitated not only the dual-channel detection of MG, but also its portable, visual, rapid, and intelligent determination. Furthermore, the high surface area of MOFs, together with the coordinate bonding interaction, π-π stacking, and electrostatic interaction sites, endows Eu3+-MOF with the efficient ability toward MG removal. This multifunctional Eu3+-MOF can be successfully used for trace detection, simultaneous determination of MG and LMG, as well as efficient removal of MG. Thus, it exhibits bright prospects for widespread applications in the field of food and environmental analysis.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article