Your browser doesn't support javascript.
loading
LRRC1 knockdown downregulates MACF1 to inhibit the malignant progression of acute myeloid leukemia by inactivating ß-catenin/c-Myc signaling.
Wang, Yao; Tong, Hongfei; Wang, Juxiang; Hu, Linglong; Huang, Zhen.
Afiliação
  • Wang Y; Department of Pediatric Hematology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyue Road, Wenzhou, 325027, Zhejiang, China.
  • Tong H; Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
  • Wang J; Department of Pediatric Hematology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyue Road, Wenzhou, 325027, Zhejiang, China.
  • Hu L; Department of Pediatric Hematology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyue Road, Wenzhou, 325027, Zhejiang, China.
  • Huang Z; Department of Pediatric Hematology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyue Road, Wenzhou, 325027, Zhejiang, China. Huangz810426@163.com.
J Mol Histol ; 55(1): 37-50, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38165568
ABSTRACT
Acute myeloid leukemia (AML) is a hematologic disease associated with genetic abnormalities. This study aimed to explore the role of leucine-rich repeat-containing protein 1 (LRRC1) in the malignant activities of AML and to reveal the molecular mechanism related to microtubule actin cross-linking factor 1 (MACF1). GEPIA database was used to analyze the expression of LRRC1 in bone marrow tissues of AML patients and the correlation between LRRC1 expression and survival analysis. LRRC1 was knocked down to assess the change of AML cell proliferation, cell cycle and apoptosis using CCK-8 assay and flow cytometry. Besides, the contents of extracellular acidification and oxygen consumption rates were measured to evaluate the glycolysis. Additionally, the interaction between LRRC1 and MACF1 predicted by MEM database and was verified by co-immunoprecipitation (Co-IP) assay. Then, MACF1 was overexpressed to conduct the rescue experiments. Expression of proteins in ß-catenin/c-Myc signaling was detected by western blot. Finally, AML xenograft mouse model was established to observe the impacts of LRRC1 silencing on the tumor development. Notably upregulated LRRC1 expression was observed in bone marrow tissues of AML patients and AML cells, and patients with the higher LRRC1 expression displayed the lower overall survival. LRRC1 depletion promoted cell cycle arrest and apoptosis and inhibited the glycolysis. Co-IP confirmed the interaction between LRRC1 and MACF1. MACF1 upregulation relieved the impacts of LRRC1 knockdown on the malignant activities of AML cells. Moreover, LRRC1 silencing inhibited the development of xenograft tumor growth of HL-60 cells in nude mice, suppressed MACF1 expression and inactivated the ß-catenin/c-Myc signaling. Collectively, LRRC1 knockdown suppressed proliferation, glycolysis and promoted apoptosis in AML cells by downregulating MACF1 expression to inactivate ß-catenin/c-Myc signaling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Proteínas de Transporte / MicroRNAs / Proteínas de Membrana Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leucemia Mieloide Aguda / Proteínas de Transporte / MicroRNAs / Proteínas de Membrana Idioma: En Ano de publicação: 2024 Tipo de documento: Article