Your browser doesn't support javascript.
loading
Stereotactic body radiotherapy for early-stage lung cancer: a systematic review on the choice of photon energy and linac flattened/unflattened beams.
Gill, Ashlesha; Hirst, Andrew L; Rowshanfarzad, Pejman; Gill, Suki; Bucknell, Nicholas; Dass, Joshua; Sabet, Mahsheed.
Afiliação
  • Gill A; School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia. ashlesha.gill@research.uwa.edu.au.
  • Hirst AL; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.
  • Rowshanfarzad P; School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia.
  • Gill S; School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, 6009, Australia.
  • Bucknell N; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.
  • Dass J; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.
  • Sabet M; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3000, Australia.
Radiat Oncol ; 19(1): 1, 2024 Jan 02.
Article em En | MEDLINE | ID: mdl-38167095
ABSTRACT
SBRT is an effective local treatment for patients with early-stage non-small cell lung cancer (NSCLC). This treatment is currently used in patients who have poor lung function or who decline surgery. As SBRT usually has small PTV margins, reducing the beam-on-time (BOT) is beneficial for accurate dose delivery by minimising intrafraction motion as well as improved patient comfort. Removal of the linear accelerator flattening filter can provide a higher dose rate which results in a faster treatment. In addition, the choice of photon energy can also affect the dose distribution to the target and the organs-at-risk (OAR). In this systematic review, studies analysing the choice of various photon beam energies, with a flattening filter or flattening filter free (FFF), were compared for their overall dosimetric benefit in the SBRT treatment for early-stage NSCLC. It was found that FFF treatment delivers a comparatively more conformal dose distribution, as well as a better homogeneity index and conformity index, and typically reduces BOT by between 30 and 50%. The trade-off may be a minor increase in monitor units for FFF treatment found in some studies but not others. Target conformity and OAR sparing, particularly lung doses appear better with 6MV FFF, but 10MV FFF was marginally more advantageous for skin sparing and BOT reduction. The favourable beam modality for clinical use would depend on the individual case, for which tumour size and depth, radiotherapy technique, as well as fractionation scheme need to be taken into account.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radiocirurgia / Carcinoma Pulmonar de Células não Pequenas / Radioterapia de Intensidade Modulada / Carcinoma de Pequenas Células do Pulmão / Neoplasias Pulmonares Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radiocirurgia / Carcinoma Pulmonar de Células não Pequenas / Radioterapia de Intensidade Modulada / Carcinoma de Pequenas Células do Pulmão / Neoplasias Pulmonares Idioma: En Ano de publicação: 2024 Tipo de documento: Article