Automatic patient-level recognition of four Plasmodium species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation.
Microbiol Spectr
; 12(2): e0144023, 2024 Feb 06.
Article
em En
| MEDLINE
| ID: mdl-38171008
ABSTRACT
Malaria remains a global health problem, with 247 million cases and 619,000 deaths in 2021. Diagnosis of Plasmodium species is important for administering the appropriate treatment. The gold-standard diagnosis for accurate species identification remains the thin blood smear. Nevertheless, this method is time-consuming and requires highly skilled and trained microscopists. To overcome these issues, new diagnostic tools based on deep learning are emerging. This study aimed to evaluate the performances of a real-time detection transformer (RT-DETR) object detection algorithm to discriminate Plasmodium species on thin blood smear images. The algorithm was trained and validated on a data set consisting in 24,720 images from 475 thin blood smears corresponding to 2,002,597 labels. Performances were calculated with a test data set of 4,508 images from 170 smears corresponding to 358,825 labels coming from six French university hospitals. At the patient level, the RT-DETR algorithm exhibited an overall accuracy of 79.4% (135/170) with a recall of 74% (40/54) and 81.9% (95/116) for negative and positive smears, respectively. Among Plasmodium-positive smears, the global accuracy was 82.7% (91/110) with a recall of 90% (38/42), 81.8% (18/22), and 76.1% (35/46) for P. falciparum, P. malariae, and P. ovale/vivax, respectively. The RT-DETR model achieved a World Health Organization (WHO) competence level 2 for species identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost devices such as a smartphone and could be suitable for deployment in low-resource setting areas lacking microscopy experts.IMPORTANCEMalaria remains a global health problem, with 247 million cases and 619,000 deaths in 2021. Diagnosis of Plasmodium species is important for administering the appropriate treatment. The gold-standard diagnosis for accurate species identification remains the thin blood smear. Nevertheless, this method is time-consuming and requires highly skilled and trained microscopists. To overcome these issues, new diagnostic tools based on deep learning are emerging. This study aimed to evaluate the performances of a real-time detection transformer (RT-DETR) object detection algorithm to discriminate Plasmodium species on thin blood smear images. Performances were calculated with a test data set of 4,508 images from 170 smears coming from six French university hospitals. The RT-DETR model achieved a World Health Organization (WHO) competence level 2 for species identification. Besides, the RT-DETR algorithm may be run in real-time on low-cost devices and could be suitable for deployment in low-resource setting areas.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Piperazinas
/
Plasmodium
/
Malária Falciparum
/
Malária
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article