Your browser doesn't support javascript.
loading
Heterologous production of 3-hydroxypropionic acid in Methylorubrum extorquens by introducing the mcr gene via a multi-round chromosomal integration system based on cre-lox71/lox66 and transposon.
Zhu, Liping; Song, Yazhen; Ma, Shunan; Yang, Song.
Afiliação
  • Zhu L; Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China. zhuliping1986@163.com.
  • Song Y; Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.
  • Ma S; Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.
  • Yang S; Shandong Province Key Laboratory of Applied Mycology, Qingdao International Center on Microbes Utilizing Biogas, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China. yangsong1209@163.com.
Microb Cell Fact ; 23(1): 5, 2024 Jan 03.
Article em En | MEDLINE | ID: mdl-38172868
ABSTRACT
BACKGROUND AND

AIM:

Reprogramming microorganisms to enhance the production of metabolites is a part of contemporary synthetic biology, which relies on the availability of genetic tools to successfully manipulate the bacteria. Methylorubrum extorquens AM1 is a platform microorganism used to convert C1 compounds into various value-added products. However, the repertoire of available plasmids to conveniently and quickly fine-tune the expression of multiple genes in this strain is extremely limited compared with other model microorganisms such as Escherichia coli. Thus, this study aimed to integrate existing technologies, such as transposon-mediated chromosomal integration and cre-lox-mediated recombination, to achieve the diversified expression of target genes through multiple chromosomal insertions in M. extorquens AM1.

RESULTS:

A single plasmid toolkit, pSL-TP-cre-km, containing a miniHimar1 transposon and an inducible cre-lox71/lox66 system, was constructed and characterized for its multiple chromosomal integration capacity. A co-transcribed mcr-egfp cassette [for the production of 3-hydroxypropionic acid (3-HP) and a reporting green fluorescent protein] was added to construct pTP-cre-mcr-egfp for evaluating its utility in mediating the expression of heterologous genes, resulting in the production of 3-HP with a titer of 34.7-55.2 mg/L by two chromosomal integration copies. Furthermore, in association with the expression of plasmid-based mcr, 3-HP production increased to 65.5-92.4 mg/L.

CONCLUSIONS:

This study used a multi-round chromosomal integration system based on cre-lox71/lox66 and a transposon to construct a single constructed vector. A heterologous mcr gene was introduced through this vector, and high expression of 3-hydroxypropionic acid was achieved in M. extorquens. This study provided an efficient genetic tool for manipulating M. extorquens, which not only help increase the expression of heterologous genes in M. extorquens but also provide a reference for strains lacking genetic manipulation vectors.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Integrases / Vetores Genéticos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Integrases / Vetores Genéticos Idioma: En Ano de publicação: 2024 Tipo de documento: Article