Your browser doesn't support javascript.
loading
Prolonging the Cycle Stability of Anion Redox P3-Type Na0.6Li0.2Mn0.8O2 through Al2O3 Atomic Layer Deposition Surface Modification.
Ling, Zhenxiao; Wu, Langyuan; Hu, Chaogen; Qi, Xiaodong; Qin, Lunjie; Pan, Jiaqi; Zhang, Xiaogang.
Afiliação
  • Ling Z; Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Wu L; Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Hu C; Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Qi X; Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Qin L; Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Pan J; Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Zhang X; Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
ACS Appl Mater Interfaces ; 16(2): 2319-2329, 2024 Jan 17.
Article em En | MEDLINE | ID: mdl-38174695
ABSTRACT
Sodium-ion batteries (SIBs) are becoming an alternative option for large-scale energy storage systems owing to their low cost and abundance. The lattice oxygen redox (LOR), which has the potential to increase the reversible capacity of materials, has promoted the development of high-energy cathode materials in SIBs. However, the utilization of oxygen anion redox reactions usually results in harmful lattice oxygen release, which hastens structural deformation and declines electrochemical performance, severely hindering their practical application. Herein, a ribbon-ordered superstructured P3-type Na0.6Li0.2Mn0.8O2 (NLMO) cathode with a uniform Al2O3 coating through atomic layer deposition (ALD) was synthesized. The cycling stability and rate capability of the materials were improved by a proper thickness of the Al2O3 layer. Differential electrochemical mass spectrometry (DEMS) results clearly suggest that the Al2O3 coating can inhibit the CO2 release caused by the highly active surface of the NLMO material. Moreover, the results of transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy (XPS) show that the Al2O3 coating can effectively prevent electrolyte and electrode side reactions and the dissolution of Mn. This surface engineering strategy sheds light on the way to prolong the cycling stability of anionic redox cathode materials.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article