Your browser doesn't support javascript.
loading
RCAN family member 3 deficiency contributes to noncompaction of the ventricular myocardium.
Hu, Ting; Liu, Lan; Wang, He; Yang, Mei; Xu, Bocheng; Xie, Hanbing; Lin, Ziyuan; Jin, Xiaolei; Wang, Ping; Liu, Yanyan; Sun, Huaqin; Liu, Shanling.
Afiliação
  • Hu T; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China.
  • Liu L; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Medical College, Tibet University, Lhasa, Tibet 850000, China.
  • Wang H; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China.
  • Yang M; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China.
  • Xu B; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China.
  • Xie H; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China.
  • Lin Z; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
  • Jin X; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; West China School of Medi
  • Wang P; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China.
  • Liu Y; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China.
  • Sun H; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China; SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Elec
  • Liu S; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China. Electronic address: sunny
J Genet Genomics ; 51(5): 543-553, 2024 May.
Article em En | MEDLINE | ID: mdl-38181896
ABSTRACT
Noncompaction of the ventricular myocardium (NVM), the third most diagnosed cardiomyopathy, is characterized by prominent trabeculae and intratrabecular recesses. However, the genetic etiology of 40%-60% of NVM cases remains unknown. Here, we identify two infants with NVM, in a nonconsanguineous family, with a typical clinical presentation of persistent bradycardia since the prenatal period. A homozygous missense variant (R223L) of RCAN family member 3 (RCAN3) is detected in both infants using whole-exome sequencing. In the zebrafish model, marked cardiac dysfunction is detected in rcan3 deficiency (MO-rcan3ATG-injected) and rcan-/- embryos. Developmental dysplasia of both endocardial and myocardial layers is also detected in rcan3-deficient embryos. RCAN3 R223L variant mRNAs can not rescue heart defects caused by rcan3 knockdown or knockout; however, hRCAN3 mRNAs rescue these phenotypes. RNA-seq experiments show that several genes involved in cardiomyopathies are significantly regulated through multiple signaling pathways in the rcan3-knockdown zebrafish model. In human cardiomyocytes, RCAN3 deficiency results in reduced proliferation and increased apoptosis, together with an abnormal mitochondrial ultrastructure. Thus, we suggest that RCAN3 is a susceptibility gene for cardiomyopathies, especially NVM and that the R223L mutation is a potential loss-of-function variant.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra Idioma: En Ano de publicação: 2024 Tipo de documento: Article