Your browser doesn't support javascript.
loading
Quantifying negative selection on synonymous variants.
Gudkov, Mikhail; Thibaut, Loïc; Giannoulatou, Eleni.
Afiliação
  • Gudkov M; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia.
  • Thibaut L; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW 2052, Australia.
  • Giannoulatou E; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia. Electronic address: e.giannoulatou@victorchang.edu.au.
HGG Adv ; 5(2): 100262, 2024 Apr 11.
Article em En | MEDLINE | ID: mdl-38192100
ABSTRACT
Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not be directly detectable. A particular example is synonymous variants, that is, those single-nucleotide variants that create a codon substitution, such that the produced amino acid sequence is unaffected. Contrary to the original theory suggesting that synonymous variants are benign, there is a growing volume of research showing that, despite their "silent" mechanism of action, some synonymous variation may be deleterious. Here, we studied the extent of the negative selective pressure acting on different classes of synonymous variants by analyzing the relative enrichment of synonymous singleton variants in the human exomes provided by gnomAD. Using a modification of the mutability-adjusted proportion of singletons (MAPS) metric as a measure of purifying selection, we found that some classes of synonymous variants are subject to stronger negative selection than others. For instance, variants that reduce codon optimality undergo stronger selection than optimality-increasing variants. Besides, selection affects synonymous variants implicated in splice-site-loss or splice-site-gain events. To understand what drives this negative selection, we tested a number of predictors in the aim to explain the variability in the selection scores. Our findings provide insights into the effects of synonymous variants at the population level, highlighting the specifics of the role that these variants play in health and disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mutação Silenciosa Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mutação Silenciosa Idioma: En Ano de publicação: 2024 Tipo de documento: Article