Your browser doesn't support javascript.
loading
CD30 protects EBV-positive diffuse large B-cell lymphoma cells against mitochondrial dysfunction through BNIP3-mediated mitophagy.
Wang, Wei-Ting; Xing, Tong-Yao; Du, Kai-Xin; Hua, Wei; Guo, Jing-Ran; Duan, Zi-Wen; Wu, Yi-Fan; Wu, Jia-Zhu; Li, Yue; Yin, Hua; Shen, Hao-Rui; Wang, Li; Li, Jian-Yong; Liang, Jin-Hua; Xu, Wei.
Afiliação
  • Wang WT; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Xing TY; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Du KX; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Hua W; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Guo JR; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Duan ZW; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Wu YF; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Wu JZ; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Li Y; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Yin H; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Shen HR; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Wang L; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Li JY; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
  • Liang JH; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China. Electro
  • Xu W; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China. Electro
Cancer Lett ; 583: 216616, 2024 Feb 28.
Article em En | MEDLINE | ID: mdl-38211650
ABSTRACT
Epstein-Barr virus (EBV) positive diffuse large B-cell lymphoma (EBV+ DLBCL) predicts poor prognosis and CD30 expression aggravates the worse consequences. Here, we reported that CD30 positivity was an independent prognostic indicator in EBV+ DLBCL patients in a retrospective cohort study. We harnessed CRISPR/Cas9 editing to engineer the first loss-of-function models of CD30 deficiency to identify that CD30 was critical for EBV+ DLBCL growth and survival. We established a pathway that EBV infection mediated CD30 expression through EBV-encoded latent membrane protein 1 (LMP1), which involved NF-κB signaling. CRISPR CD30 knockout significantly repressed BCL2 interacting protein 3 (BNIP3) expression and co-IP assay indicated a binding between CD30 and BNIP3. Moreover, silencing of CD30 induced mitochondrial dysfunction and suppressed mitophagy, resulting in the accumulation of damaged mitochondria by depressing BNIP3 expression. Additionally, CRISPR BNIP3 knockout caused proliferation defects and increased sensitivity to apoptosis. All the findings reveal a strong relationship between mitophagy and adverse prognosis of EBV+ DLBCL and discover a new regulatory mechanism of BNIP3-mediated mitophagy, which may help develop effective treatment regimens with anti-CD30 antibody brentuximab vedotin to improve the prognosis of CD30+ EBV+ DLBCL patients.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Linfoma Difuso de Grandes Células B / Infecções por Vírus Epstein-Barr / Doenças Mitocondriais Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Linfoma Difuso de Grandes Células B / Infecções por Vírus Epstein-Barr / Doenças Mitocondriais Idioma: En Ano de publicação: 2024 Tipo de documento: Article