Your browser doesn't support javascript.
loading
Zinc finger protein ZNF638 regulates triglyceride metabolism via ANGPTL8 in an estrogen dependent manner.
Meng, Meiyao; Cao, Yuxiang; Qiu, Jin; Shan, Guangyu; Wang, Yingwen; Zheng, Ying; Guo, Mingwei; Yu, Jian; Ma, Yuandi; Xie, Cen; Hu, Cheng; Xu, Lingyan; Mueller, Elisabetta; Ma, Xinran.
Afiliação
  • Meng M; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
  • Cao Y; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
  • Qiu J; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
  • Shan G; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
  • Wang Y; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
  • Zheng Y; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
  • Guo M; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
  • Yu J; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
  • Ma Y; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
  • Xie C; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
  • Hu C; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth Pe
  • Xu L; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
  • Mueller E; Division of Endocrinology, Diabetes and Metabolism Department of Medicine New York University, Grossman School of Medicine, New York, NY, USA.
  • Ma X; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; Department of En
Metabolism ; 152: 155784, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38211696
ABSTRACT
BACKGROUND AND

AIM:

Triglyceride (TG) levels are closely related to obesity, fatty liver and cardiovascular diseases, while the regulatory factors and mechanism for triglyceride homeostasis are still largely unknown. Zinc Finger Protein 638 (ZNF638) is a newly discovered member of zinc finger protein family for adipocyte function in vitro. The aim of the present work was to investigate the role of ZNF638 in regulating triglyceride metabolism in mice.

METHODS:

We generated ZNF638 adipose tissue specific knockout mice (ZNF638 FKO) by cross-breeding ZNF638 flox to Adiponectin-Cre mice and achieved adipose tissue ZNF638 overexpression via adenoviral mediated ZNF638 delivery in inguinal adipose tissue (iWAT) to examined the role and mechanisms of ZNF638 in fat biology and whole-body TG homeostasis.

RESULTS:

Although ZNF638 FKO mice showed similar body weights, body composition, glucose metabolism and serum parameters compared to wild-type mice under chow diet, serum TG levels in ZNF638 FKO mice were increased dramatically after refeeding compared to wild-type mice, accompanied with decreased endothelial lipoprotein lipase (LPL) activity and increased lipid absorption of the small intestine. Conversely, ZNF638 overexpression in iWAT reduced serum TG levels while enhanced LPL activity after refeeding in female C57BL/6J mice and obese ob/ob mice. Specifically, only female mice exhibited altered TG metabolism upon ZNF638 expression changes in fat. Mechanistically, RNA-sequencing analysis revealed that the TG regulator angiopoietin-like protein 8 (Angptl8) was highly expressed in iWAT of female ZNF638 FKO mice. Neutralizing circulating ANGPTL8 in female ZNF638 FKO mice abolished refeeding-induced TG elevation. Furthermore, we demonstrated that ZNF638 functions as a transcriptional repressor by recruiting HDAC1 for histone deacetylation and broad lipid metabolic gene suppression, including Angptl8 transcription inhibition. Moreover, we showed that the sexual dimorphism is possibly due to estrogen dependent regulation on ZNF638-ANGPTL8 axis.

CONCLUSION:

We revealed a role of ZNF638 in the regulation of triglyceride metabolism by affecting Angptl8 transcriptional level in adipose tissue with sexual dimorphism.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Triglicerídeos / Tecido Adiposo / Proteínas de Ligação a RNA / Proteínas de Ligação a DNA / Proteína 8 Semelhante a Angiopoietina Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Triglicerídeos / Tecido Adiposo / Proteínas de Ligação a RNA / Proteínas de Ligação a DNA / Proteína 8 Semelhante a Angiopoietina Idioma: En Ano de publicação: 2024 Tipo de documento: Article