Your browser doesn't support javascript.
loading
A dual-functional fluorescence probe CDs@ZIF-90 for highly specific detection of Al3+ and Hg2+ in environmental water samples.
Peng, Liping; Guo, Hao; Wu, Ning; Wang, Mingyue; Hao, Yanrui; Ren, Borong; Hui, Yingfei; Ren, Henglong; Yang, Wu.
Afiliação
  • Peng L; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
  • Guo H; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
  • Wu N; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
  • Wang M; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
  • Hao Y; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
  • Ren B; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
  • Hui Y; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
  • Ren H; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
  • Yang W; Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base
Anal Chim Acta ; 1288: 342171, 2024 Feb 01.
Article em En | MEDLINE | ID: mdl-38220302
ABSTRACT
In recent years, the escalating water pollution has resulted in serious harm to human health and ecological environment due to the excessive discharge of toxic metal ions such as Al3+ and Hg2+. Therefore, it is crucial to develop a simple, efficient, and rapid detection method for monitoring the levels of the metal ions in water environment to ensure public health and ecological safety. In this study, carbon dots (CDs) containing heteroatom Si were successfully synthesized by the solvothermal method. Subsequently, a novel dual-functional fluorescent sensor (CDs@ZIF-90) was constructed by integrating CDs with zeolitic imidazolate framework-90 (ZIF-90). The fluorescent composite CDs@ZIF-90 showed outstanding optical properties and excellent structural and luminescence stability in aqueous medium. Particularly, its fluorescence at 453 nm can be remarkably enhanced by Al3+ and quenched upon exposure to Hg2+. As a result, the CDs@ZIF-90 was applied in sensitive and selective determination of Al3+ and Hg2+ ions with wide linear ranges (1-200 µM and 0.05-240 µM) and low detection limits (0.81 µM and 19.6 nM). Moreover, a convenient and rapid fluorescence test strip was also successfully prepared for visual detection of Al3+ and Hg2+ ions. This work is the first try to use the CDs@ZIF-90 fluorescence sensing material for highly sensitive and selective determination of Al3+ and Hg2+ based on "turn-on" and "turn-off" dual modes, respectively and it provides a new idea for monitoring quality of drinking water and environmental water. It is of great significance for human health and environmental protection.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article