Your browser doesn't support javascript.
loading
Multimodal Pediatric Lymphoma Detection using PET and MRI.
Wang, Hongzhi; Sarrami, Amirhossein; Wu, Joy Tzung-Yu; Baratto, Lucia; Sharma, Arjun; Wong, Ken C L; Singh, Shashi Bhushan; Daldrup-Link, Heike E; Syeda-Mahmood, Tanveer.
Afiliação
  • Wang H; IBM Almaden Research Center, San Jose, CA, U.S.A.
  • Sarrami A; Stanford University, Palo Alto, CA, U.S.A.
  • Wu JT; IBM Almaden Research Center, San Jose, CA, U.S.A.
  • Baratto L; Stanford University, Palo Alto, CA, U.S.A.
  • Sharma A; Stanford University, Palo Alto, CA, U.S.A.
  • Wong KCL; IBM Almaden Research Center, San Jose, CA, U.S.A.
  • Singh SB; IBM Almaden Research Center, San Jose, CA, U.S.A.
  • Daldrup-Link HE; Stanford University, Palo Alto, CA, U.S.A.
  • Syeda-Mahmood T; Stanford University, Palo Alto, CA, U.S.A.
AMIA Annu Symp Proc ; 2023: 736-743, 2023.
Article em En | MEDLINE | ID: mdl-38222333
ABSTRACT
Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Linfoma / Neoplasias Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Linfoma / Neoplasias Idioma: En Ano de publicação: 2023 Tipo de documento: Article