Multimodal Pediatric Lymphoma Detection using PET and MRI.
AMIA Annu Symp Proc
; 2023: 736-743, 2023.
Article
em En
| MEDLINE
| ID: mdl-38222333
ABSTRACT
Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Linfoma
/
Neoplasias
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article