Your browser doesn't support javascript.
loading
RvD1 improves resident alveolar macrophage self-renewal via the ALX/MAPK14/S100A8/A9 pathway in acute respiratory distress syndrome.
Ye, Yang; Yang, Qian; Wei, Jinling; Shen, Chenxi; Wang, Haixing; Zhuang, Rong; Cao, Yuan; Ding, Yajun; Xu, Haoran; Xiang, Shuyang; Mei, Hongxia; Li, Zhongwang; Ren, Xiya; Zhang, Chen; Xiao, Ji; Zheng, Shengxing; Li, Ting; Zeng, Ruifeng; Liu, Huacheng; Lin, Han; Shang-Guan, Wangning; Li, Ming; Jin, Shengwei; Wang, Qian.
Afiliação
  • Ye Y; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Yang Q; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Wei J; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Shen C; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Wang H; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Zhuang R; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Cao Y; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Ding Y; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Xu H; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Xiang S; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Mei H; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Li Z; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Ren X; Wenzhou Medical University, Wenzhou, People's Republic of China.
  • Zhang C; Wenzhou Medical University, Wenzhou, People's Republic of China.
  • Xiao J; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Zheng S; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Li T; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Zeng R; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Liu H; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Lin H; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Shang-Guan W; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Li M; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China.
  • Jin S; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
  • Wang Q; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's H
J Adv Res ; 2024 Jan 17.
Article em En | MEDLINE | ID: mdl-38237770
ABSTRACT

INTRODUCTION:

Acute respiratory distress syndrome (ARDS) is a pulmonary inflammatory process primarily caused by sepsis. The resolution of inflammation is an active process involving the endogenous biosynthesis of specialized pro-resolving mediators, including resolvin D1 (RvD1). Resident alveolar macrophages (RAMs) maintain pulmonary homeostasis and play a key role in the resolution phase. However, the role of RAMs in promoting the resolution of inflammation by RvD1 is unclear.

OBJECTIVES:

Here, we investigated the mechanisms of RvD1 on regulating RAMs to promote the resolution of ARDS.

METHODS:

Mice were administered lipopolysaccharide and/or Escherichia coli via aerosol inhalation to establish a self-limited ARDS model. Then, RvD1 was administered at the peak inflammatory response. RAMs self-renewal was measured by flow cytometry, RAM phagocytosis was measured by two-photon fluorescence imaging. In addition, plasma was collected from intensive care unit patients on days 0-2, 3-5, and 6-9 to measure RvD1 and S100A8/A9 levels using triple quadrupole/linear ion trap mass spectrometry.

RESULTS:

RAMs were found to play a pivotal role in resolving inflammation during ARDS, and RvD1 enhanced RAM proliferation and phagocytosis, which was abrogated by a lipoxin A4 receptor (ALX, RvD1 receptor) inhibitor. Both primary RAMs transfected with rS100A8/A9 and/or S100A8/A9 siRNA and S100A9-/- mice (also deficient in S100A8 function) showed higher turnover and phagocytic function, indicating that RvD1 exerted its effects on RAMs by inhibiting S100A8/A9 production in the resolution phase. RvD1 reduced S100A8/A9 and its upstream MAPK14 levels in vivo and in vitro. Finally, in the patients, RvD1 levels were lower, but S100A8/A9 levels were higher.

CONCLUSIONS:

We propose that RvD1 improved RAM self-renewal and phagocytosis via the ALX/MAPK14/S100A8/A9 signaling pathway. Plasma RvD1 and S100A8/A9 levels were negatively correlated, and associated with the outcome of sepsis-induced ARDS.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article