A deep learning-based algorithm improves radiology residents' diagnoses of acute pulmonary embolism on CT pulmonary angiograms.
Eur J Radiol
; 171: 111324, 2024 Feb.
Article
em En
| MEDLINE
| ID: mdl-38241853
ABSTRACT
PURPOSE:
To compare radiology residents' diagnostic performances to detect pulmonary emboli (PEs) on CT pulmonary angiographies (CTPAs) with deep-learning (DL)-based algorithm support and without.METHODS:
Fully anonymized CTPAs (n = 207) of patients suspected of having acute PE served as input for PE detection using a previously trained and validated DL-based algorithm. Three residents in their first three years of training, blinded to the index report and clinical history, read the CTPAs first without, and 2 months later with the help of artificial intelligence (AI) output, to diagnose PE as present, absent or indeterminate. We evaluated concordances and discordances with the consensus-reading results of two experts in chest imaging.RESULTS:
Because the AI algorithm failed to analyze 11 CTPAs, 196 CTPAs were analyzed; 31 (15.8 %) were PE-positive. Good-classification performance was higher for residents with AI-algorithm support than without (AUROCs 0.958 [95 % CI 0.921-0.979] vs. 0.894 [95 % CI 0.850-0.931], p < 0.001, respectively). The main finding was the increased sensitivity of residents' diagnoses using the AI algorithm (92.5 % vs. 81.7 %, respectively). Concordance between residents (kappa 0.77 [95 % CI 0.76-0.78]; p < 0.001) improved with AI-algorithm use (kappa 0.88 [95 % CI 0.87-0.89]; p < 0.001).CONCLUSION:
The AI algorithm we used improved between-resident agreements to interpret CTPAs for suspected PE and, hence, their diagnostic performances.Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Embolia Pulmonar
/
Radiologia
/
Aprendizado Profundo
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article