Your browser doesn't support javascript.
loading
Assessment of the performance of a symbiotic microalgal-bacterial granular sludge reactor for the removal of nitrogen and organic carbon from dairy wastewater.
Bucci, Paula; Marcos Montero, Enrique José; García-Depraect, Octavio; Zaritzky, Noemí; Caravelli, Alejandro; Muñoz, Raúl.
Afiliação
  • Bucci P; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Centro de Investigación y Desarrollo en Criotecnología
  • Marcos Montero EJ; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain.
  • García-Depraect O; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain.
  • Zaritzky N; Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 116 s/N, La Plata, Buenos Aires, Argentina; Facultad de Ingeniería, Universidad Nacional de la Plata, Argentina.
  • Caravelli A; Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 116 s/N, La Plata, Buenos Aires, Argentina.
  • Muñoz R; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain. Electronic address: mutora@iq.uva.es.
Chemosphere ; 351: 141250, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38242520
ABSTRACT
Cheese whey (CW) is a nutrient deficient dairy effluent, which requires external nutrient supplementation for aerobic treatment. CW, supplemented with ammonia, can be treated using aerobic granular sludge (AGS) in a sequencing batch reactor (SBR). AGS are aggregates of microbial origin that do not coagulate under reduced hydrodynamic shear and settle significantly faster than activated sludge flocs. However, granular instability, slow granulation start-up, high energy consumption and CO2 emission have been reported as the main limitations in bacterial AGS-SBR. Algal-bacterial granular systems have shown be an innovative alternative to improve these limitations. Unfortunately, algal-bacterial granular systems for the treatment of wastewaters with higher organic loads such as CW have been poorly studied. In this study, an algal-bacterial granular system implemented in a SBR (SBRAB) for the aerobic treatment of ammonia-supplemented CW wastewaters was investigated and compared with a bacterial granular reactor (SBRB). Mass balances were used to estimate carbon and nitrogen (N) assimilation, nitrification and denitrification in both set-ups. SBRB exhibited COD and ammonia removal of 100% and 94% respectively, high nitrification (89%) and simultaneous nitrification-denitrification (SND) of 23% leading to an inorganic N removal of 30%. The efficient algal-bacterial symbiosis in granular systems completely removed COD and ammonia (100%) present in the dairy wastewater. SBRAB microalgae growth could reduce about 20% of the CO2 emissions produced by bacterial oxidation of organic compounds according to estimates based on synthesis reactions of bacterial and algal biomass, in which the amount of assimilated N determined by mass balance was taken into account. A lower nitrification (75%) and minor loss of N by denitrifying activity (<5% Ng, SND 2%) was also encountered in SBRAB as a result of its higher biomass production, which could be used for the generation of value-added products such as biofertilizers and biostimulants.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microalgas / Águas Residuárias Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microalgas / Águas Residuárias Idioma: En Ano de publicação: 2024 Tipo de documento: Article