Your browser doesn't support javascript.
loading
Supervised machine learning algorithms to predict the duration and risk of long-term hospitalization in HIV-infected individuals: a retrospective study.
Li, Jialu; Hao, Yiwei; Liu, Ying; Wu, Liang; Liang, Hongyuan; Ni, Liang; Wang, Fang; Wang, Sa; Duan, Yujiao; Xu, Qiuhua; Xiao, Jinjing; Yang, Di; Gao, Guiju; Ding, Yi; Gao, Chengyu; Xiao, Jiang; Zhao, Hongxin.
Afiliação
  • Li J; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Hao Y; Division of Medical Record and Statistics, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Liu Y; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Wu L; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Liang H; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Ni L; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Wang F; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Wang S; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Duan Y; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Xu Q; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Xiao J; Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China.
  • Yang D; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Gao G; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Ding Y; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Gao C; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Xiao J; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
  • Zhao H; Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
Front Public Health ; 11: 1282324, 2023.
Article em En | MEDLINE | ID: mdl-38249414
ABSTRACT

Objective:

The study aimed to use supervised machine learning models to predict the length and risk of prolonged hospitalization in PLWHs to help physicians timely clinical intervention and avoid waste of health resources.

Methods:

Regression models were established based on RF, KNN, SVM, and XGB to predict the length of hospital stay using RMSE, MAE, MAPE, and R2, while classification models were established based on RF, KNN, SVM, NN, and XGB to predict risk of prolonged hospital stay using accuracy, PPV, NPV, specificity, sensitivity, and kappa, and visualization evaluation based on AUROC, AUPRC, calibration curves and decision curves of all models were used for internally validation.

Results:

In regression models, XGB model performed best in the internal validation (RMSE = 16.81, MAE = 10.39, MAPE = 0.98, R2 = 0.47) to predict the length of hospital stay, while in classification models, NN model presented good fitting and stable features and performed best in testing sets, with excellent accuracy (0.7623), PPV (0.7853), NPV (0.7092), sensitivity (0.8754), specificity (0.5882), and kappa (0.4672), and further visualization evaluation indicated that the largest AUROC (0.9779), AUPRC (0.773) and well-performed calibration curve and decision curve in the internal validation.

Conclusion:

This study showed that XGB model was effective in predicting the length of hospital stay, while NN model was effective in predicting the risk of prolonged hospitalization in PLWH. Based on predictive models, an intelligent medical prediction system may be developed to effectively predict the length of stay and risk of HIV patients according to their medical records, which helped reduce the waste of healthcare resources.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções por HIV Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Infecções por HIV Idioma: En Ano de publicação: 2023 Tipo de documento: Article