Your browser doesn't support javascript.
loading
Testing quantum electrodynamics in extreme fields using helium-like uranium.
Loetzsch, R; Beyer, H F; Duval, L; Spillmann, U; Banas, D; Dergham, P; Kröger, F M; Glorius, J; Grisenti, R E; Guerra, M; Gumberidze, A; Heß, R; Hillenbrand, P-M; Indelicato, P; Jagodzinski, P; Lamour, E; Lorentz, B; Litvinov, S; Litvinov, Yu A; Machado, J; Paul, N; Paulus, G G; Petridis, N; Santos, J P; Scheidel, M; Sidhu, R S; Steck, M; Steydli, S; Szary, K; Trotsenko, S; Uschmann, I; Weber, G; Stöhlker, Th; Trassinelli, M.
Afiliação
  • Loetzsch R; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany. robert.loetzsch@uni-jena.de.
  • Beyer HF; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Duval L; Laboratoire Kastler Brossel, Sorbonne Université, ENS-PSL Research University, Collège de France, CNRS, Paris, France.
  • Spillmann U; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Banas D; Institute of Physics, Jan Kochanowski University, Kielce, Poland.
  • Dergham P; Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France.
  • Kröger FM; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany.
  • Glorius J; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Grisenti RE; Helmholtz-Institut Jena, Jena, Germany.
  • Guerra M; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Gumberidze A; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Heß R; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
  • Hillenbrand PM; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Indelicato P; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Jagodzinski P; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Lamour E; I. Physikalisches Institut, Justus-Liebig-Universität, Giessen, Germany.
  • Lorentz B; Laboratoire Kastler Brossel, Sorbonne Université, ENS-PSL Research University, Collège de France, CNRS, Paris, France.
  • Litvinov S; Institute of Physics, Jan Kochanowski University, Kielce, Poland.
  • Litvinov YA; Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France.
  • Machado J; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Paul N; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Paulus GG; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Petridis N; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
  • Santos JP; Laboratoire Kastler Brossel, Sorbonne Université, ENS-PSL Research University, Collège de France, CNRS, Paris, France.
  • Scheidel M; Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Jena, Germany.
  • Sidhu RS; Helmholtz-Institut Jena, Jena, Germany.
  • Steck M; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Steydli S; Institut für Kernphysik, Goethe-Universität, Frankfurt am Main, Germany.
  • Szary K; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
  • Trotsenko S; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Uschmann I; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Weber G; School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK.
  • Stöhlker T; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Trassinelli M; Institut des NanoSciences de Paris, CNRS, Sorbonne Université, Paris, France.
Nature ; 625(7996): 673-678, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38267680
ABSTRACT
Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions1-6. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s1/22p3/2 J = 2 → 1s1/22s1/2 J = 1 intrashell transition in the heaviest two-electron ion (U90+) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article