Your browser doesn't support javascript.
loading
Fog controls biological cycling of soil phosphorus in the Coastal Cordillera of the Atacama Desert.
Sun, Xiaolei; Amelung, Wulf; Klumpp, Erwin; Walk, Janek; Mörchen, Ramona; Böhm, Christoph; Moradi, Ghazal; May, Simon Matthias; Tamburini, Federica; Wang, Ye; Bol, Roland.
Afiliação
  • Sun X; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany.
  • Amelung W; Institute for Environmental Research, Biology 5, RWTH Aachen University, Aachen, Germany.
  • Klumpp E; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany.
  • Walk J; Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.
  • Mörchen R; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany.
  • Böhm C; Department of Geography and Regional Research, University of Vienna, Vienna, Austria.
  • Moradi G; Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.
  • May SM; Institute for Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany.
  • Tamburini F; Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany.
  • Wang Y; Institute for Environmental Research, Biology 5, RWTH Aachen University, Aachen, Germany.
  • Bol R; Institute of Geography, University Cologne, Albertus-Magnus-Platz, Cologne, Germany.
Glob Chang Biol ; 30(1): e17068, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38273559
ABSTRACT
Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P). We collected topsoil samples (0-10 cm) from each of 54 subsites, including sites in direct adjacency (<10 cm) and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, while inland sites at 10-23 km from the coast rely solely on sporadic rainfall for water supply. To assess biological P cycling we performed sequential P fractionation and determined oxygen isotope of HCl-extractable inorganic P δ 18 O HCl - P i $$ \mathrm{P}\ \left({\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}}\right) $$ . Total P (Pt ) concentration exponentially increased from 336 mg kg-1 to a maximum of 1021 mg kg-1 in inland areas ≥10 km. With increasing distance from the coast, soil δ 18 O HCl - P i $$ {\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}} $$ values declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥10 km inland. Biological cycling of HCl-Pi near the coast reached a maximum of 76%-100%, which could only be explained by the fact that fog water predominately drives biological P cycling. In inland regions, with minimal rainfall (<5 mm) as single water source, only 24 ± 14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which thus controls apatite dissolution rates and related occurrence and spread of microbial life in this extreme environment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Solo Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Solo Idioma: En Ano de publicação: 2024 Tipo de documento: Article