Your browser doesn't support javascript.
loading
Improving early detection of keratoconus by Non Contact Tonometry. A computational study and new biomarkers proposal.
Redaelli, Elena; Nana, Michael; Calvo, Begoña; Rodríguez Matas, José Félix; Luraghi, Giulia; Rozema, Jos; Grasa, Jorge.
Afiliação
  • Redaelli E; Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain. Electronic address: elena.redaelli@unizar.es.
  • Nana M; LaBS, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
  • Calvo B; Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomecánica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.
  • Rodríguez Matas JF; LaBS, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
  • Luraghi G; LaBS, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
  • Rozema J; Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.
  • Grasa J; Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomecánica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.
J Mech Behav Biomed Mater ; 152: 106413, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38281439
ABSTRACT
Keratoconus is a progressive ocular disorder affecting the corneal tissue, leading to irregular astigmatism and decreased visual acuity. The architectural organization of corneal tissue is altered in keratoconus, however, data from ex vivo testing of biomechanical properties of keratoconic corneas are limited and it is unclear how their results relate to true mechanical properties in vivo. This study explores the mechanical properties of keratoconic corneas through numerical simulations of non-contact tonometry (NCT) reproducing the clinical test of the Corvis ST device. Three sensitivity analyses were conducted to assess the impact of corneal material properties, size, and location of the pathological area on NCT results. Additionally, novel asymmetry-based indices were proposed to better characterize corneal deformations and improve the diagnosis of keratoconus. Our results show that the weakening of corneal material properties leads to increased deformation amplitude and altered biomechanical response. Furthermore, asymmetry indices offer valuable information for locating the pathological tissue. These findings suggest that adjusting the Corvis ST operation, such as a camera rotation, could enhance keratoconus detection and provide insights into the relative position of the affected area. Future research could explore the application of these indices in detecting early-stage keratoconus and assessing the fellow eye's risk for developing the pathology.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ceratocone Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ceratocone Idioma: En Ano de publicação: 2024 Tipo de documento: Article