Your browser doesn't support javascript.
loading
The Hopf whole-brain model and its linear approximation.
Ponce-Alvarez, Adrián; Deco, Gustavo.
Afiliação
  • Ponce-Alvarez A; Departament de Matemàtiques, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain. adrian.ponce@upc.edu.
  • Deco G; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08005, Barcelona, Spain.
Sci Rep ; 14(1): 2615, 2024 01 31.
Article em En | MEDLINE | ID: mdl-38297071
ABSTRACT
Whole-brain models have proven to be useful to understand the emergence of collective activity among neural populations or brain regions. These models combine connectivity matrices, or connectomes, with local node dynamics, noise, and, eventually, transmission delays. Multiple choices for the local dynamics have been proposed. Among them, nonlinear oscillators corresponding to a supercritical Hopf bifurcation have been used to link brain connectivity and collective phase and amplitude dynamics in different brain states. Here, we studied the linear fluctuations of this model to estimate its stationary statistics, i.e., the instantaneous and lagged covariances and the power spectral densities. This linear approximation-that holds in the case of heterogeneous parameters and time-delays-allows analytical estimation of the statistics and it can be used for fast parameter explorations to study changes in brain state, changes in brain activity due to alterations in structural connectivity, and modulations of parameter due to non-equilibrium dynamics.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Fenômenos Fisiológicos do Sistema Nervoso Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Fenômenos Fisiológicos do Sistema Nervoso Idioma: En Ano de publicação: 2024 Tipo de documento: Article