Your browser doesn't support javascript.
loading
Toxicity and oxidative stress of HepG2 and HL-7702 cells induced by PAH4 using oil as a carrier.
Liu, Guoyan; Zhou, Wanli; Zhang, Xu; Zhu, Jie; Xu, Xiaowei; Li, Youdong; Zhang, Jixian; Wen, Chaoting; Liang, Li; Liu, Xiaofang; Xu, Xin.
Afiliação
  • Liu G; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
  • Zhou W; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
  • Zhang X; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
  • Zhu J; School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China.
  • Xu X; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
  • Li Y; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
  • Zhang J; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
  • Wen C; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
  • Liang L; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
  • Liu X; School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China. Electronic address: liuxf@yzu.edu.cn.
  • Xu X; School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China. Electronic address: xuxin@yzu.edu.cn.
Food Res Int ; 178: 113988, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38309887
ABSTRACT
Polycyclic aromatic hydrocarbons (PAHs), a widespread class of food pollutants, are commonly exposed to humans along with edible oil. The dietary exposure pattern of PAH4 was simulated to study the toxicity and oxidative stress of oil-based PAH4 on hepatocytes. The findings demonstrated that oil-based PAH4 induced cell viability and mitochondrial membrane potential decreased and promoted apoptosis and oxidative stress in a concentration-dependent manner. Benzo[a]pyrene had the strongest toxicity and HL-7702 cells were more sensitive to toxicity than HepG2 cells, due to differences in induced CYP1A enzyme activity. Oil-based PAH4 had greater cytotoxicity than PAH4, attributed to the synergistic effect of oil and PAH4. Furthermore, oil-based PAH4 induced oxidative stress in HepG2 and HL-7702 cells through the same AHR-Nrf2-KEAP1 pathway, which was elucidated by detecting genes and proteins expression. This study lays the foundation for elucidating the harm of dietary exposure to PAHs and reminds us that food composition may increase the harm of PAHs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Contaminação de Alimentos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Contaminação de Alimentos Idioma: En Ano de publicação: 2024 Tipo de documento: Article