Your browser doesn't support javascript.
loading
Characterizing Age-related Changes in Intact Mitochondrial Proteoforms in Murine Hearts using Quantitative Top-Down Proteomics.
Ramirez-Sagredo, Andrea; Sunny, Anju; Cupp-Sutton, Kellye; Chowdhury, Trishika; Zhao, Zhitao; Wu, Si; Ann Chiao, Ying.
Afiliação
  • Ramirez-Sagredo A; Oklahoma Medical Research Foundation.
  • Sunny A; University of Alabama.
  • Cupp-Sutton K; University of Alabama.
  • Chowdhury T; University of Alabama.
  • Zhao Z; University of Oklahoma.
  • Wu S; University of Alabama.
  • Ann Chiao Y; Oklahoma Medical Research Foundation.
Res Sq ; 2024 Jan 18.
Article em En | MEDLINE | ID: mdl-38313302
ABSTRACT
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational protein modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying all protein sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging.

METHODS:

Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified.

RESULTS:

From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation.

CONCLUSION:

By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article