Your browser doesn't support javascript.
loading
Separable Microneedle for Integrated Hyperglycemia Sensing and Photothermal Responsive Metformin Release.
Ge, Rujiao; Sun, Chenyang; Su, Jiaxin; Tian, Meng; Qiao, Yuchun; Li, Jinze; Du, Jinya; Wei, Wei; Yang, Shuangshuang; Wu, Chaoxiong; Xiang, Qin; Xing, Yi; Dong, Haifeng.
Afiliação
  • Ge R; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Sun C; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Su J; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Tian M; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Qiao Y; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Li J; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, P. R. China.
  • Du J; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Wei W; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Yang S; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Wu C; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, P. R. China.
  • Xiang Q; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, P. R. China.
  • Xing Y; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
  • Dong H; Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Anal Chem ; 2024 Feb 07.
Article em En | MEDLINE | ID: mdl-38324763
ABSTRACT
Microdevices that offer hyperglycemia monitoring and controllable drug delivery are urgently needed for daily diabetes management. Herein, a theranostic separable double-layer microneedle (DLMN) patch consisting of a swellable GelMA supporting base layer for glycemia sensing and a phase-change material (PCM) arrowhead layer for hyperglycemia regulation has been fabricated. The Cu-TCPP(Fe)/glucose oxidase composite and 3,3',5,5'-tetramethylbenzidine coembedded in the supporting base layer permit a visible color shift at the base surface in the presence of glucose via a cascade reaction, allowing for the in situ detection of glucose in interstitial fluid. The PCM arrowhead layer is encapsulated with water monodispersity melanin nanoparticles from Sepia officinalis and metformin that is imparted with a near-infrared ray photothermal response feature, which is beneficial to the controllable release of metformin for suppression of hyperglycemia. By applying the DLMN patch to the streptozotocin-induced type 2 diabetic Sprague-Dawley rat model, the results demonstrated that it can effectively extract dermal interstitial fluid, read out glucose levels, and regulate hyperglycemia. This DLMN-integrated portable colorimetric sensor and self-regulated glucose level hold great promise for daily diabetes management.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article