Your browser doesn't support javascript.
loading
Fabrication of 0D/1D S-scheme CoO-CuBi2O4 heterojunction for efficient photocatalytic degradation of tetracycline by activating peroxydisulfate and product risk assessment.
Wang, Xueying; Su, Ni; Wang, Xinyu; Cao, Delu; Xu, Chunlan; Wang, Xu; Yan, Qiaozhi; Lu, Changyu; Zhao, Huimin.
Afiliação
  • Wang X; School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China.
  • Su N; School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China.
  • Wang X; School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China.
  • Cao D; School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China.
  • Xu C; School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China.
  • Wang X; School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China.
  • Yan Q; School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China.
  • Lu C; School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China. Electronic address: pzpzlxl@163.com.
  • Zhao H; College of Chemistry and Chemical Engineering, Heze University, Heze 274015, China. Electronic address: zhmthreesister@163.com.
J Colloid Interface Sci ; 661: 943-956, 2024 May.
Article em En | MEDLINE | ID: mdl-38330666
ABSTRACT
The step-scheme (S-scheme) heterojunction has excellent redox capability, effectively degrading organic pollutants in wastewater. Combining S-scheme heterojunction with activated persulfate advanced oxidation process reasonably can further enhance the degradation of Emerging Contaminants. Herein, a novel zero-dimensional/one-dimensional (0D/1D) CoO-CuBi2O4 (CoO-CBO) photocatalyst with S-scheme heterojunction was designed by hydrothermal and solvothermal methods. The band structure and electron and hole transfer pathway of CoO-CBO were analyzed using the ex-situ and in-situ X-ray photoelectron spectroscopy (XPS), Ultraviolet and Visible Spectrophotometer (UV-Vis) and optical radiation Kelvin probe force microscope (KPFM), and the formation of S-scheme heterojunction was demonstrated. The photocatalytic activity of ·S-scheme CoO-CBO heterojunction was carried out by degrading tetracycline (TC) with activating potassium monopersulfate triple salt under visible light. Compared with pure CuBi2O4 and pure CoO, 30%CoO/CuBi2O4 catalyst exhibited the highest TC degradation performance after activating persulfate, degrading 89.5% of TC within 90 min. On the one hand, the S-scheme heterojunction formed between CoO and CBO had a high redox potential. On the other hand, the activation of persulfate by Co and Cu could accelerate redox cycles and facilitate the generation of active radicals such as SO4-, O2- and OH, promoting the separation of the photogenerated e- and h+ in the composite, enhancing the peroxydisulfate (PDS) activation performance and improving the degradation effect of TC. Then, a gradual decrease in the toxicity of the intermediates in the TC degradation process was detected by ECOCER. In all, this study provided an S-scheme CoO/CuBi2O4 heterojunction that can activate PDS to degrade TC efficiently, which provided a new idea for the study of novel pollutant degradation and environmental toxicology.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article