Your browser doesn't support javascript.
loading
Domain transformation learning for MR image reconstruction from dual domain input.
Oh, Changheun; Chung, Jun-Young; Han, Yeji.
Afiliação
  • Oh C; Neuroscience Research Institute, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea.
  • Chung JY; Neuroscience Research Institute, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21565, Republic of Korea. Electronic address: jychung@gachon.ac.kr.
  • Han Y; Neuroscience Research Institute, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea; Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea. Electronic address: yjhan@gachon.ac.kr.
Comput Biol Med ; 170: 108098, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38330825
ABSTRACT
Medical images are acquired through diverse imaging systems, with each system employing specific image reconstruction techniques to transform sensor data into images. In MRI, sensor data (i.e., k-space data) is encoded in the frequency domain, and fully sampled k-space data is transformed into an image using the inverse Fourier Transform. However, in efforts to reduce acquisition time, k-space is often subsampled, necessitating a sophisticated image reconstruction method beyond a simple transform. The proposed approach addresses this challenge by training a model to learn domain transform, generating the final image directly from undersampled k-space input. Significantly, to improve the stability of reconstruction from randomly subsampled k-space data, folded images are incorporated as supplementary inputs in the dual-input ETER-net. Moreover, modifications are made to the formation of inputs for the bi-RNN stages to accommodate non-fixed k-space trajectories. Experimental validation, encompassing both regular and irregular sampling trajectories, validates the method's effectiveness. The results demonstrated superior performance, measured by PSNR, SSIM, and VIF, across acceleration factors of 4 and 8. In summary, the dual-input ETER-net emerges as an effective both regular and irregular sampling trajectories, and accommodating diverse acceleration factors.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética Idioma: En Ano de publicação: 2024 Tipo de documento: Article