Your browser doesn't support javascript.
loading
Soil microbial communities' contributions to soil ecosystem multifunctionality in the natural restoration of abandoned metal mines.
Li, Ting; Wang, Sichen; Liu, Chang'e; Yu, Yadong; Zong, Mingming; Duan, Changqun.
Afiliação
  • Li T; School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan
  • Wang S; School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan
  • Liu C; School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan
  • Yu Y; School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan
  • Zong M; School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan
  • Duan C; School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan
J Environ Manage ; 353: 120244, 2024 Feb 27.
Article em En | MEDLINE | ID: mdl-38335599
ABSTRACT
On a global scale, the restoration of metal mine ecosystem functions is urgently required, and soil microorganisms play an important role in this process. Conventional studies frequently focused on the relationship between individual functions and their drivers; however, ecosystem functions are multidimensional, and considering any given function in isolation ignores the trade-offs and interconnectedness between functions, which complicates obtaining a comprehensive understanding of ecosystem functions. To elucidate the relationships between soil microorganisms and the ecosystem multifunctionality (EMF) of metal mines, this study investigated natural restoration of metal mines, evaluated the EMF, and used high-throughput sequencing to explore the bacterial and fungal communities as well as their influence on EMF. Bacterial community diversity and composition were more sensitive to mine restoration than fungal community. Bacterial diversity exhibited redundancy in improving N-P-K-S multifunctionality; however, rare bacterial taxa including Dependentiae, Spirochaetes, and WPS-2 were important for metal multifunctionality. Although no clear relationship between fungal diversity and EMF was observed, the abundance of Glomeromycota had a significant effect on the three EMF categories (N-P-K-S, carbon, and metal multifunctionality). Previous studies confirmed a pronounced positive association between microbial diversity and multifunctionality; however, the relationship between microbial diversity and multifunctionality differs among functions' categories. In contrast, the presence of critical microbial taxa exerted stronger effects on mine multifunctionality.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ecossistema / Microbiota Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ecossistema / Microbiota Idioma: En Ano de publicação: 2024 Tipo de documento: Article