Your browser doesn't support javascript.
loading
Contaminant transformation during sediment oxygenation: Temporal variation of oxidation mechanisms mediated by hydroxyl radicals and aerobic microbes.
Li, Chengwei; Zhang, Yanting; Zheng, Yunsong; Shi, Chongwen; Lu, Yuxi; Zhang, Yaoqiang; Yuan, Songhu.
Afiliação
  • Li C; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China.
  • Zhang Y; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China.
  • Zheng Y; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China.
  • Shi C; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China.
  • Lu Y; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China.
  • Zhang Y; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China.
  • Yuan S; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China Univ
Sci Total Environ ; 919: 170855, 2024 Apr 01.
Article em En | MEDLINE | ID: mdl-38340822
ABSTRACT
Sediment oxidation by oxygen is ubiquitous, whereas the mechanisms of concurrent contaminant oxidation, particularly the temporal variation of chemical and biological oxidation, remain inadequately understood. This study investigated the oxidation of two contaminants (phenol and trichloroethylene) with different responses during the oxygenation of four natural sediments with different redox properties. Results showed that contaminant oxidation was initially dominated by hydroxyl radicals (•OH) (first stage), stabilized for different time for different sediments (second stage), and was re-started by microbial mechanism (third stage). In the first short stage, the contribution of chemical oxidation by •OH was mainly determined by the variation of sediment electron-donating capacity (EDC). In the second long stage, the stabilization time was dependent on sediment redox properties, that is, the abundance and growth of aerobic microbes capable of degrading the target contaminants. A more reduced sediment resulted in a higher extent of oxidation by •OH and a longer stabilization time. When the third stage of aerobic microbial oxidation was started, the contaminants like phenol that can be utilized by microbes can be oxidized quickly and completely, and those refractory contaminants like trichloroethylene remained unchanged. The study differentiates chemical and biological mechanisms for contaminant oxidation during sediment oxygenation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tricloroetileno / Radical Hidroxila Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tricloroetileno / Radical Hidroxila Idioma: En Ano de publicação: 2024 Tipo de documento: Article