Your browser doesn't support javascript.
loading
Integrative studies of ionic liquid interface layers: bridging experiments, theoretical models and simulations.
An, Rong; Wu, Nanhua; Gao, Qingwei; Dong, Yihui; Laaksonen, Aatto; Shah, Faiz Ullah; Ji, Xiaoyan; Fuchs, Harald.
Afiliação
  • An R; Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. ran@njust.edu.cn.
  • Wu N; Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
  • Gao Q; College of Environmental and Chemical Engineering, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
  • Dong Y; Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel.
  • Laaksonen A; Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden. xiaoyan.ji@ltu.se.
  • Shah FU; Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden. aatto@mmk.su.se.
  • Ji X; Center of Advanced Research in Bionanoconjugates and Biopolymers, ''Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania.
  • Fuchs H; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Nanoscale Horiz ; 9(4): 506-535, 2024 Mar 25.
Article em En | MEDLINE | ID: mdl-38356335
ABSTRACT
Ionic liquids (ILs) are a class of salts existing in the liquid state below 100 °C, possessing low volatility, high thermal stability as well as many highly attractive solvent and electrochemical capabilities, etc., making them highly tunable for a great variety of applications, such as lubricants, electrolytes, and soft functional materials. In many applications, ILs are first either physi- or chemisorbed on a solid surface to successively create more functional materials. The functions of ILs at solid surfaces can differ considerably from those of bulk ILs, mainly due to distinct interfacial layers with tunable structures resulting in new ionic liquid interface layer properties and enhanced performance. Due to an almost infinite number of possible combinations among the cations and anions to form ILs, the diversity of various solid surfaces, as well as different external conditions and stimuli, a detailed molecular-level understanding of their structure-property relationship is of utmost significance for a judicious design of IL-solid interfaces with appropriate properties for task-specific applications. Many experimental techniques, such as atomic force microscopy, surface force apparatus, and so on, have been used for studying the ion structuring of the IL interface layer. Molecular Dynamics simulations have been widely used to investigate the microscopic behavior of the IL interface layer. To interpret and clarify the IL structure and dynamics as well as to predict their properties, it is always beneficial to combine both experiments and simulations as close as possible. In another theoretical model development to bridge the structure and properties of the IL interface layer with performance, thermodynamic prediction & property modeling has been demonstrated as an effective tool to add the properties and function of the studied nanomaterials. Herein, we present recent findings from applying the multiscale triangle "experiment-simulation-thermodynamic modeling" in the studies of ion structuring of ILs in the vicinity of solid surfaces, as well as how it qualitatively and quantitatively correlates to the overall ILs properties, performance, and function. We introduce the most common techniques behind "experiment-simulation-thermodynamic modeling" and how they are applied for studying the IL interface layer structuring, and we highlight the possibilities of the IL interface layer structuring in applications such as lubrication and energy storage.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article