Your browser doesn't support javascript.
loading
A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder.
Szot, Justin O; Cuny, Hartmut; Martin, Ella Mma; Sheng, Delicia Z; Iyer, Kavitha; Portelli, Stephanie; Nguyen, Vivien; Gereis, Jessica M; Alankarage, Dimuthu; Chitayat, David; Chong, Karen; Wentzensen, Ingrid M; Vincent-Delormé, Catherine; Lermine, Alban; Burkitt-Wright, Emma; Ji, Weizhen; Jeffries, Lauren; Pais, Lynn S; Tan, Tiong Y; Pitt, James; Wise, Cheryl A; Wright, Helen; Andrews, Israel D; Pruniski, Brianna; Grebe, Theresa A; Corsten-Janssen, Nicole; Bouman, Katelijne; Poulton, Cathryn; Prakash, Supraja; Keren, Boris; Brown, Natasha J; Hunter, Matthew F; Heath, Oliver; Lakhani, Saquib A; McDermott, John H; Ascher, David B; Chapman, Gavin; Bozon, Kayleigh; Dunwoodie, Sally L.
Afiliação
  • Szot JO; Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia.
  • Cuny H; Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia.
  • Martin EM; School of Clinical Medicine, Faculty of Medicine and Health, Sydney, New South Wales, Australia.
  • Sheng DZ; Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia.
  • Iyer K; Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia.
  • Portelli S; Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia.
  • Nguyen V; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.
  • Gereis JM; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
  • Alankarage D; Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia.
  • Chitayat D; Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia.
  • Chong K; Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia.
  • Wentzensen IM; Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, and.
  • Vincent-Delormé C; Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
  • Lermine A; Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
  • Burkitt-Wright E; GeneDx, Gaithersburg, Maryland, USA.
  • Ji W; Clinique de Génétique "Guy Fontaine," Hôpital Jeanne de Flandre, Lille, France.
  • Jeffries L; Laboratoire de Biologie Médicale Multisites SeqOIA, FMG2025, Paris, France.
  • Pais LS; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.
  • Tan TY; Yale University School of Medicine, Pediatric Genomics Discovery Program, New Haven, Connecticut, USA.
  • Pitt J; Yale University School of Medicine, Pediatric Genomics Discovery Program, New Haven, Connecticut, USA.
  • Wise CA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
  • Wright H; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
  • Andrews ID; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
  • Pruniski B; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
  • Grebe TA; Metabolic Laboratory, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
  • Corsten-Janssen N; Department of Diagnostic Genomics, PathWest Laboratory Medicine Western Australia, Nedlands, Perth, Western Australia, Australia.
  • Bouman K; General Paediatric Department, Perth Children's Hospital, Perth, Western Australia, Australia.
  • Poulton C; Rural Clinical School, University of Western Australia, Perth, Western Australia, Australia.
  • Prakash S; Pinnacle Dermatology, Scottsdale, Arizona, USA.
  • Keren B; Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA.
  • Brown NJ; Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA.
  • Hunter MF; Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
  • Heath O; Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
  • Lakhani SA; Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Western Australia, Australia.
  • McDermott JH; Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA.
  • Ascher DB; Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Sorbonne Université, Paris, France.
  • Chapman G; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
  • Bozon K; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
  • Dunwoodie SL; Monash Genetics, Monash Health, Clayton, Victoria, Australia.
J Clin Invest ; 134(4)2024 Feb 15.
Article em En | MEDLINE | ID: mdl-38357931
ABSTRACT
Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida / NAD Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida / NAD Idioma: En Ano de publicação: 2024 Tipo de documento: Article