Your browser doesn't support javascript.
loading
Twisted pair transmission line coil - a flexible, self-decoupled and robust element for 7 T MRI.
Vliem, Jules; Xiao, Ying; Wenz, Daniel; Xin, Lijing; Teeuwise, Wouter; Ruytenberg, Thomas; Webb, Andrew; Zivkovic, Irena.
Afiliação
  • Vliem J; Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands.
  • Xiao Y; CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland.
  • Wenz D; CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland.
  • Xin L; CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland.
  • Teeuwise W; C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands.
  • Ruytenberg T; C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands.
  • Webb A; C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands.
  • Zivkovic I; Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands. Electronic address: i.zivkovi@tue.nl.
Magn Reson Imaging ; 108: 146-160, 2024 May.
Article em En | MEDLINE | ID: mdl-38364973
ABSTRACT

OBJECTIVE:

This study evaluates the performance of a twisted pair transmission line coil as a transceive element for 7 T MRI in terms of physical flexibility, robustness to shape deformations, and interelement decoupling.

METHODS:

Each coil element was created by shaping a twisted pair of wires into a circle. One wire was interrupted at the top, while the other was interrupted at the bottom, and connected to the matching circuit. Electromagnetic simulations were conducted to determine the optimal number of twists per length (in terms of B1+ field efficiency, SAR efficiency, sensitivity to elongation, and interelement decoupling properties) and for investigating the fundamental operational principle of the coil through fields streamline visualisation. A comparison between the twisted pair coil and a conventional loop coil in terms of B1+ fields, maxSAR10g, and stability of S11 when the coil was deformed was performed. Experimentally measured interelement coupling between individual elements of multichannel arrays was also investigated.

RESULTS:

Increasing the number of twists per length resulted in a more physically robust coil. Poynting vector streamline visualisation showed that the twisted pair coil concentrated most of the energy in the near field. The twisted pair coil exhibited comparable B1+ fields and improved maxSAR10g to the conventional coil but demonstrated exceptional stability with respect to coil deformation and a strong self-decoupling nature when placed in an array configuration.

DISCUSSION:

The findings highlight the robustness of the twisted pair coil, showcasing its stability under shape variations. This coil holds great potential as a flexible RF coil for various imaging applications using multiple-element arrays, benefiting from its inherent decoupling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ondas de Rádio / Imageamento por Ressonância Magnética Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ondas de Rádio / Imageamento por Ressonância Magnética Idioma: En Ano de publicação: 2024 Tipo de documento: Article