Your browser doesn't support javascript.
loading
BATMAN: Improved T cell receptor cross-reactivity prediction benchmarked on a comprehensive mutational scan database.
Banerjee, Amitava; Pattinson, David J; Wincek, Cornelia L; Bunk, Paul; Chapin, Sarah R; Navlakha, Saket; Meyer, Hannah V.
Afiliação
  • Banerjee A; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
  • Pattinson DJ; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA.
  • Wincek CL; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
  • Bunk P; Heidelberg University, 69117 Heidelberg, Germany.
  • Chapin SR; School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
  • Navlakha S; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
  • Meyer HV; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
bioRxiv ; 2024 Feb 08.
Article em En | MEDLINE | ID: mdl-38370810
ABSTRACT
Predicting T cell receptor (TCR) activation is challenging due to the lack of both unbiased benchmarking datasets and computational methods that are sensitive to small mutations to a peptide. To address these challenges, we curated a comprehensive database encompassing complete single amino acid mutational assays of 10,750 TCR-peptide pairs, centered around 14 immunogenic peptides against 66 TCRs. We then present an interpretable Bayesian model, called BATMAN, that can predict the set of peptides that activates a TCR. When validated on our database, BATMAN outperforms existing methods by 20% and reveals important biochemical predictors of TCR-peptide interactions.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article