Artificial Hydrophilic Organic and Dendrite-Suppressed Inorganic Hybrid Solid Electrolyte Interface Layer for Highly Stable Zinc Anodes.
ACS Appl Mater Interfaces
; 16(8): 10218-10226, 2024 Feb 28.
Article
em En
| MEDLINE
| ID: mdl-38380613
ABSTRACT
Aqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an organic-inorganic coating layer (Nafion-TiO2) was introduced to protect the Zn anode and electrolyte interface. Briefly, Nafion effectively shields against the corrosion from water molecules through the hydrophobic wall of -CF3 and guided zinc deposition from the -SO3 functional group, while TiO2 particles with a higher Young's modulus (151 GPa vs 120 GPa from Zn metal) suppress the zinc dendrite formation. As a result, with the protection of Nafion-TiO2, the symmetrical Znâ¥Zn battery shows an improved cycle life of 1,750 h at 0.5 mA cm-2, and the full cell based on Znâ¥MnO2 shows a long cycle life over 1,500 cycles at 1 A g-1. Our research offers a novel approach for protecting zinc metal anodes, potentially applicable to other metal anodes such as those in lithium and sodium batteries.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article