Your browser doesn't support javascript.
loading
Therapeutic effect and mechanism of action of pterostilbene nano drugs in dry eye models.
Li, Kexin; Lin, Meng; Huang, Kaiyan; Han, Jiaxin; Wei, Linzhi; Miao, Lijie; Chen, Huijuan; Gong, Qianwen; Li, Xingyi; Hu, Liang.
Afiliação
  • Li K; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
  • Lin M; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
  • Huang K; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
  • Han J; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
  • Wei L; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
  • Miao L; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
  • Chen H; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
  • Gong Q; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
  • Li X; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. Electronic address: lixingyi_1984@mail.eye.ac.cn.
  • Hu L; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optom
Exp Eye Res ; 241: 109836, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38387712
ABSTRACT
Dry eye disease is a multifactorial dysfunction of the tear film and ocular surface, with etiology involving inflammation and oxidative stress on the ocular surface. Pterostilbene (PS) is a secondary metabolite extracted from plants, which possesses remarkable anti-inflammatory and antioxidant effects. However, its application is limited by light instability and very poor water solubility. We modified fat-soluble PS into a biparental pterostilbene-glutaric anhydride-arginine-glycine-aspartic acid (PS-GA-RGD) nanomedicine by prodrug ligation of functional peptides. The aim of this study was to explore the protective effect and potential mechanism of PS-GA-RGD on dry eye disease in vitro and in vivo. We demonstrated good long-term biocompatibility of PS-GA-RGD through rabbit eye stimulation test. Lipopolysaccharide (LPS) was used to induce murine macrophages RAW 264.7 to establish an inflammation and oxidative stress model. In this model, PS-GA-RGD effectively reduced the production of ROS and 8-OHdG, enhancing the expression of antioxidant factor Nrf2 and antioxidant enzyme heme oxygenase-1. In addition, the expression of NF-κB inflammatory pathway significantly increased in LPS-induced RAW 264.7 cells, while PS-GA-RGD could significantly reduce this pathway. Hypertonic saline was utilized to establish a hypertonic model of human corneal epithelial cells. PS-GA-RGD was found to significantly reduce the production of ROS and NLRP3 inflammasomes in this model, exhibiting superior efficacy compared to PS. Experimental dry eye animal models were co-induced with subcutaneous injection of scopolamine and an intelligently controlled environmental system. We demonstrated that PS-GA-RGD nano drugs can prevent and reduce corneal epithelial cell defects and apoptosis, protect conjunctival goblet cells, and have an excellent anti-inflammatory effect. Finally, we demonstrated that RGD sequence in PS-GA-RGD can enhance cellular uptake, corneal retention, and penetration, thereby increasing their bioavailability and efficacy by a cell uptake assay and rabbit corneal drug retention experiment. Overall, this study highlights the potential of PS-GA-RGD nanomedicines in the treatment of dry eyes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndromes do Olho Seco / Antioxidantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndromes do Olho Seco / Antioxidantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article