Therapeutic effect and mechanism of action of pterostilbene nano drugs in dry eye models.
Exp Eye Res
; 241: 109836, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-38387712
ABSTRACT
Dry eye disease is a multifactorial dysfunction of the tear film and ocular surface, with etiology involving inflammation and oxidative stress on the ocular surface. Pterostilbene (PS) is a secondary metabolite extracted from plants, which possesses remarkable anti-inflammatory and antioxidant effects. However, its application is limited by light instability and very poor water solubility. We modified fat-soluble PS into a biparental pterostilbene-glutaric anhydride-arginine-glycine-aspartic acid (PS-GA-RGD) nanomedicine by prodrug ligation of functional peptides. The aim of this study was to explore the protective effect and potential mechanism of PS-GA-RGD on dry eye disease in vitro and in vivo. We demonstrated good long-term biocompatibility of PS-GA-RGD through rabbit eye stimulation test. Lipopolysaccharide (LPS) was used to induce murine macrophages RAW 264.7 to establish an inflammation and oxidative stress model. In this model, PS-GA-RGD effectively reduced the production of ROS and 8-OHdG, enhancing the expression of antioxidant factor Nrf2 and antioxidant enzyme heme oxygenase-1. In addition, the expression of NF-κB inflammatory pathway significantly increased in LPS-induced RAW 264.7 cells, while PS-GA-RGD could significantly reduce this pathway. Hypertonic saline was utilized to establish a hypertonic model of human corneal epithelial cells. PS-GA-RGD was found to significantly reduce the production of ROS and NLRP3 inflammasomes in this model, exhibiting superior efficacy compared to PS. Experimental dry eye animal models were co-induced with subcutaneous injection of scopolamine and an intelligently controlled environmental system. We demonstrated that PS-GA-RGD nano drugs can prevent and reduce corneal epithelial cell defects and apoptosis, protect conjunctival goblet cells, and have an excellent anti-inflammatory effect. Finally, we demonstrated that RGD sequence in PS-GA-RGD can enhance cellular uptake, corneal retention, and penetration, thereby increasing their bioavailability and efficacy by a cell uptake assay and rabbit corneal drug retention experiment. Overall, this study highlights the potential of PS-GA-RGD nanomedicines in the treatment of dry eyes.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Síndromes do Olho Seco
/
Antioxidantes
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article