Your browser doesn't support javascript.
loading
Iron-decorated covalent organic framework as efficient catalyst for activating peroxydisulfate to degrade 2,4-dichlorophenol: Performance and mechanism insight.
Han, Yuhang; Tai, Meng; Yao, Yuxin; Li, Jingyang; Wu, Yuanyuan; Hu, Bo; Ma, Yunchao; Liu, Chunbo.
Afiliação
  • Han Y; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China.
  • Tai M; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China.
  • Yao Y; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China.
  • Li J; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
  • Wu Y; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China.
  • Hu B; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China. Electronic address: hubo2001@163.com.
  • Ma Y; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; College of Chemistry, Jilin Normal University, Siping, 136000, China. Electronic address: yunchaoma@jlnu.edu.cn.
  • Liu C; Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China; Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engi
J Colloid Interface Sci ; 663: 238-250, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38401444
ABSTRACT
Herein, a novel two-dimensional double-pore covalent organic framework (JLNU-305) was synthesized using N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TAPD) and 2,2'-bipyridine-5,5'-dicarboxaldehyde (BPDA). The extended π-π conjugated structure and nitrogen-riched pyridine in JLNU-305 (JLNU = Jilin Normal University) provide abundant binding sites for Fe doping. The obtained JLNU-305-Fe exhibited high and recycled catalytic efficiency for peroxydisulfate (PDS) activation to completely degrade 10 mg/L 2,4-dichlorophenol (2,4-DCP) within 8 min. The JLNU-305-Fe/PDS system showed excellent catalytic activity and cyclic stability. The capture experiments and electron paramagnetic resonance (ESR) analysis indicated that the catalytic behavior of JLNU-305-Fe/PDS is contributed to the synergistic effect between free radicals and non-free radicals. It is the first time to activate PDS for covalent organic frameworks (COFs) being used to degrade 2,4-DCP, which has a great potential for development and practical application in related water environment remediation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article