Your browser doesn't support javascript.
loading
Enhanced performance of fiber-based perovskite solar cell achieved by multi-functional high polymer doping strategy.
Xie, Ziang; Chen, Sen; Zhang, Shiping; Pei, Yili; Li, Li; Wu, Ping.
Afiliação
  • Xie Z; Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China; State Key Lab for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871,
  • Chen S; Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
  • Zhang S; Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
  • Pei Y; Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
  • Li L; Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
  • Wu P; Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China. Electronic address: pingwu@sas.ustb.edu.cn.
J Colloid Interface Sci ; 663: 309-328, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38402825
ABSTRACT
Toward the realization of efficient, durable, and sustainable fiber-based perovskite solar cells (fb-PSCs), a comprehensive optimization strategy focused on enhancing electron transport layer (ETL), perovskite (PVK) photovoltaic layer, and hole transport layer (HTL) is presented. A champion PCE of 10.66 % with 37.9 % relative enhancement over control has been achieved in the optimized fb-PSC. A significantly improved mechanical resilience and storage durability are also recorded. Decorating the SnO2 ETL with methylammonium lead triiodide (MAPbI3) strengthened the ETL/PVK interfacial integrity, and doping the MAPbI3 layer with the multi-functional polymer of PJ71 remarkably enhanced the PVK layer's crystallization quality, and effectively passivated the grain boundary defects. A CO2 pre-treatment of the spiro-OMeTAD HTL enhanced its hole conductivity. It is the synergetic combination of these methodologies that mutually contributed to the performance boost of the fb-PSC. The phenomenological model based on layer conductance shows that the PVK layer chiefly influences the device's anti-bending ability, followed by the ETL, and HTL the least impact. To further enhance the PCE of fb-PSCs, optimizing the interface and minimizing the stress-induced defects are essential. These measures, coupled with increasing carrier diffusion length and reducing surface recombination, are key to advancing the fb-PSC performance. An encapsulation with polyolefin elastomer substantially reduced the potential lead leakage of the device, and facilitated its eco-friendly application.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article