Your browser doesn't support javascript.
loading
Chromosome-level genome assembly of Oncomelania hupensis: the intermediate snail host of Schistosoma japonicum.
Liu, Qin; Duan, Lei; Guo, Yun-Hai; Yang, Li-Min; Zhang, Yi; Li, Shi-Zhu; Lv, Shan; Hu, Wei; Chen, Nan-Sheng; Zhou, Xiao-Nong.
Afiliação
  • Liu Q; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Dis
  • Duan L; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Dis
  • Guo YH; School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.
  • Yang LM; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Dis
  • Zhang Y; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Dis
  • Li SZ; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Dis
  • Lv S; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
  • Hu W; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Dis
  • Chen NS; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
  • Zhou XN; National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Dis
Infect Dis Poverty ; 13(1): 19, 2024 Feb 27.
Article em En | MEDLINE | ID: mdl-38414088
ABSTRACT

BACKGROUND:

Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China, the Philippines and Indonesia. Oncomelania hupensis (Gastropoda Pomatiopsidae) is the unique intermediate host of S. japonicum. A complete genome sequence of O. hupensis will enable the fundamental understanding of snail biology as well as its co-evolution with the S. japonicum parasite. Assembling a high-quality reference genome of O. hupehensis will provide data for further research on the snail biology and controlling the spread of S. japonicum.

METHODS:

The draft genome was de novo assembly using the long-read sequencing technology (PacBio Sequel II) and corrected with Illumina sequencing data. Then, using Hi-C sequencing data, the genome was assembled at the chromosomal level. CAFE was used to do analysis of contraction and expansion of the gene family and CodeML module in PAML was used for positive selection analysis in protein coding sequences.

RESULTS:

A total length of 1.46 Gb high-quality O. hupensis genome with 17 unique full-length chromosomes (2n = 34) of the individual including a contig N50 of 1.35 Mb and a scaffold N50 of 75.08 Mb. Additionally, 95.03% of these contig sequences were anchored in 17 chromosomes. After scanning the assembled genome, a total of 30,604 protein-coding genes were predicted. Among them, 86.67% were functionally annotated. Further phylogenetic analysis revealed that O. hupensis was separated from a common ancestor of Pomacea canaliculata and Bellamya purificata approximately 170 million years ago. Comparing the genome of O. hupensis with its most recent common ancestor, it showed 266 significantly expanded and 58 significantly contracted gene families (P < 0.05). Functional enrichment of the expanded gene families indicated that they were mainly involved with intracellular, DNA-mediated transposition, DNA integration and transposase activity.

CONCLUSIONS:

Integrated use of multiple sequencing technologies, we have successfully constructed the genome at the chromosomal-level of O. hupensis. These data will not only provide the compressive genomic information, but also benefit future work on population genetics of this snail as well as evolutional studies between S. japonicum and the snail host.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Schistosoma japonicum / Gastrópodes Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Schistosoma japonicum / Gastrópodes Idioma: En Ano de publicação: 2024 Tipo de documento: Article