Your browser doesn't support javascript.
loading
Synthesis, biological evaluation and docking studies of N-substituted resveratrol derivatives.
Wu, Haoyu; Liu, Liying; Song, Mingxiang; Yin, Xiaorong; Chen, Mengqing; Lv, Guangyao; Zhao, Feng; Mou, Xiaofeng.
Afiliação
  • Wu H; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Liu L; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Song M; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Yin X; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Chen M; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Lv G; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Zhao F; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China. Electronic address: y
  • Mou X; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China. Electronic address: m
Fitoterapia ; 174: 105872, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38417681
ABSTRACT
A total of 19 resveratrol derivatives, including 12 imines and 7 amines, were synthesized, among which compounds 1, 5, 6, 7', 11', and 13 are new compounds. The anti-inflammatory and antitumor activities of these compounds were evaluated in vitro. The results revealed that compounds 1, 6, 8', 12, and 12' exhibited significant inhibitory effects (> 50%) on NO production at the concentration of 10 µM and their NO production inhibitory activities have a significant concentration-dependent ability. Additionally, compounds 8' and 12' showed promising COX-2 inhibitory activity, and the molecular docking analysis indicated their stable binding to multiple amino acid residues within the active pocket of COX-2 through hydrogen bonding. Moreover, compound 12' exhibited inhibitory effects on various tumor cell lines and induced apoptosis in MCF-7 breast cancer cells, which was not observed with resveratrol alone. Therefore, the N-substituted structural modification of resveratrol would have possibly enhanced the bioactivity of resveratrol and facilitated its application.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Antineoplásicos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Antineoplásicos Idioma: En Ano de publicação: 2024 Tipo de documento: Article