Your browser doesn't support javascript.
loading
Facile Access to High Solid Content Monodispersed Microspheres via Dual-Component Surfactants Regulation toward High-Performance Colloidal Photonic Crystals.
Yu, Xiao-Qing; Wu, Jie; Wang, Jia-Wei; Zhang, Nian-Xiang; Qing, Ren-Kun; Li, Guo-Xing; Li, Qing; Chen, Su.
Afiliação
  • Yu XQ; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China.
  • Wu J; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China.
  • Wang JW; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China.
  • Zhang NX; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China.
  • Qing RK; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China.
  • Li GX; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China.
  • Li Q; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China.
  • Chen S; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering and Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China.
Adv Mater ; 36(24): e2312879, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38444241
ABSTRACT
Monodispersed microspheres play a major role in optical science and engineering, providing ideal building blocks for structural color materials. However, the method toward high solid content (HSC) monodispersed microspheres has remained a key hurdle. Herein, a facile access to harvest monodispersed microspheres based on the emulsion polymerization mechanism is demonstrated, where anionic and nonionic surfactants are employed to achieve the electrostatic and steric dual-stabilization balance in a synergistic manner. Monodispersed poly(styrene-butyl acrylate-methacrylic acid) colloidal latex with 55 wt% HSC is achieved, which shows an enhanced self-assembly efficiency of 280% compared with the low solid content (10 wt%) latex. In addition, Ag-coated colloidal photonic crystal (Ag@CPC) coating with near-zero refractive index is achieved, presenting the characteristics of metamaterials. And an 11-fold photoluminescence emission enhancement of CdSe@ZnS quantum dots is realized by the Ag@CPC metamaterial coating. Taking advantage of high assembly efficiency, easily large-scale film-forming of the 55 wt% HSC microspheres latex, robust Ag@CPC metamaterial coatings could be easily produced for passive cooling. The coating demonstrates excellent thermal insulation performance with theoretical cooling power of 30.4 W m-2, providing practical significance for scalable CPC architecture coatings in passive cooling.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article