Your browser doesn't support javascript.
loading
Dual-energy computed tomography imaging with megavoltage and kilovoltage X-ray spectra.
Jadick, Giavanna; Schlafly, Geneva; La Rivière, Patrick J.
Afiliação
  • Jadick G; University of Chicago, Department of Radiology, Chicago, Illinois, United States.
  • Schlafly G; University of Chicago, Department of Radiology, Chicago, Illinois, United States.
  • La Rivière PJ; University of Chicago, Department of Radiology, Chicago, Illinois, United States.
J Med Imaging (Bellingham) ; 11(2): 023501, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38445223
ABSTRACT

Purpose:

Single-energy computed tomography (CT) often suffers from poor contrast yet remains critical for effective radiotherapy treatment. Modern therapy systems are often equipped with both megavoltage (MV) and kilovoltage (kV) X-ray sources and thus already possess hardware for dual-energy (DE) CT. There is unexplored potential for enhanced image contrast using MV-kV DE-CT in radiotherapy contexts.

Approach:

A single-line integral toy model was designed for computing basis material signal-to-noise ratio (SNR) using estimation theory. Five dose-matched spectra (3 kV, 2 MV) and three variables were considered spectral combination, spectral dose allocation, and object material composition. The single-line model was extended to a simulated CT acquisition of an anthropomorphic phantom with and without a metal implant. Basis material sinograms were computed and synthesized into virtual monoenergetic images (VMIs). MV-kV and kV-kV VMIs were compared with single-energy images.

Results:

The 80 kV-140 kV pair typically yielded the best SNRs, but for bone thicknesses >8 cm, the detunedMV-80 kV pair surpassed it. Peak MV-kV SNR was achieved with ∼90% dose allocated to the MV spectrum. In CT simulations of the pelvis with a steel implant, MV-kV VMIs yielded a higher contrast-to-noise ratio (CNR) than single-energy CT and kV-kV DE-CT. Without steel, the MV-kV VMIs produced higher contrast but lower CNR than single-energy CT.

Conclusions:

This work analyzes MV-kV DE-CT imaging and assesses its potential advantages. The technique may be used for metal artifact correction and generation of VMIs with higher native contrast than single-energy CT. Improved denoising is generally necessary for greater CNR without metal.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article