Your browser doesn't support javascript.
loading
Role of Fe decoration on the oxygen evolving state of Co3O4 nanocatalysts.
Haase, Felix T; Ortega, Eduardo; Saddeler, Sascha; Schmidt, Franz-Philipp; Cruz, Daniel; Scholten, Fabian; Rüscher, Martina; Martini, Andrea; Jeon, Hyo Sang; Herzog, Antonia; Hejral, Uta; Davis, Earl M; Timoshenko, Janis; Knop-Gericke, Axel; Lunkenbein, Thomas; Schulz, Stephan; Bergmann, Arno; Roldan Cuenya, Beatriz.
Afiliação
  • Haase FT; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Ortega E; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Saddeler S; Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen [CENIDE], University of Duisburg-Essen Essen Germany.
  • Schmidt FP; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany.
  • Cruz D; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany.
  • Scholten F; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Rüscher M; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Martini A; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Jeon HS; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Herzog A; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Hejral U; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Davis EM; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Timoshenko J; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
  • Knop-Gericke A; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany.
  • Lunkenbein T; Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36 45470 Mülheim Germany.
  • Schulz S; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany.
  • Bergmann A; Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen [CENIDE], University of Duisburg-Essen Essen Germany.
  • Roldan Cuenya B; Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany abergmann@fhi-berlin.mpg.de roldan@fhi-berlin.mpg.de.
Energy Environ Sci ; 17(5): 2046-2058, 2024 Mar 05.
Article em En | MEDLINE | ID: mdl-38449571
ABSTRACT
The production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline Co3O4 catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization. Here, we employ a variety of operando spectroscopic methods to unveil how Fe decoration increases the catalytic activity of Co3O4 nanocatalysts as well as steer the (near-surface) active state formation. Our study shows a link of the termination-dependent Fe decoration to the activity enhancement and a significantly stronger Co3O4 near-surface (structural) adaptation under the reaction conditions. The near-surface Fe- and Co-O species accumulate an oxidative charge and undergo a reversible bond contraction during the catalytic process. Moreover, our work demonstrates the importance of low coordination surface sites on the Co3O4 host to ensure an efficient Fe-induced activity enhancement, providing another puzzle piece to facilitate optimized catalyst design.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article