Your browser doesn't support javascript.
loading
The REV-ERB antagonist SR8278 modulates keratinocyte viability in response to UVA and UVB radiation.
Cvammen, William; Kemp, Michael G.
Afiliação
  • Cvammen W; Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA.
  • Kemp MG; Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA.
Photochem Photobiol ; 2024 Mar 08.
Article em En | MEDLINE | ID: mdl-38459721
ABSTRACT
The nucleotide excision repair (NER) system removes UV photoproducts from genomic DNA and is controlled by the circadian clock. Given that small-molecule compounds have been developed to target various clock proteins, we examined whether the cryptochrome inhibitor KS15 and REV-ERB antagonist SR8278 could modulate keratinocyte responses to UV radiation in vitro. We observed that though SR8278 promoted cell viability in UVB-irradiated cells, it had little effect on NER or on the expression of the clock-regulated NER factor XPA. Rather, we found that both KS15 and SR8278 absorb light within the UV spectrum to limit initial UV photoproduct formation in DNA. Moreover, SR8278 promoted UVB viability even in cells in which the core circadian clock protein BMAL1 was disrupted, which indicates that SR8278 is likely acting via other REV-ERB transcriptional targets. We further observed that SR8278 sensitized keratinocytes to light sources containing primarily UVA wavelengths of light likely due to the generation of toxic reactive oxygen species. Though other studies have demonstrated beneficial effects of SR8278 in other model systems, our results here suggest that SR8278 has limited utility for UV photoprotection in the skin and will likely cause phototoxicity in humans or mammals exposed to solar radiation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article